Global well-posedness for the KP-I equation ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
Global well-posedness for the KP-I equation on the background of a non localized solution
Author(s) :
Molinet, Luc [Auteur]
Laboratoire Analyse, Géométrie et Applications [LAGA]
Saut, Jean-Claude [Auteur]
Laboratoire de Mathématiques d'Orsay [LMO]
Tzvetkov, Nikolay [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire Analyse, Géométrie et Applications [LAGA]
Saut, Jean-Claude [Auteur]
Laboratoire de Mathématiques d'Orsay [LMO]
Tzvetkov, Nikolay [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Journal title :
Communications in Mathematical Physics
Pages :
775–810
Publisher :
Springer Verlag
Publication date :
2007
ISSN :
0010-3616
English keyword(s) :
Global existence
Kadomtsev-Petviashvili equation
Non localized solution
Kadomtsev-Petviashvili equation
Non localized solution
HAL domain(s) :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
English abstract : [en]
We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave ...
Show more >We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave or the Zaitsev solitary waves which are localized in $x$ and $y$ periodic or conversely).Show less >
Show more >We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave or the Zaitsev solitary waves which are localized in $x$ and $y$ periodic or conversely).Show less >
Language :
Anglais
Popular science :
Non
Collections :
Source :
Files
- document
- Open access
- Access the document
- paper.pdf
- Open access
- Access the document
- 0610223
- Open access
- Access the document
- document
- Open access
- Access the document
- paper.pdf
- Open access
- Access the document