A spectral radius type formula for ...
Document type :
Pré-publication ou Document de travail
Title :
A spectral radius type formula for approximation numbers of composition operators
Author(s) :
Li, Daniel [Auteur correspondant]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodriguez-Piazza, Luis [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodriguez-Piazza, Luis [Auteur]
English keyword(s) :
approximation numbers
Bergman space
composition operator
Dirichlet space
Green capacity
Hardy space
weighted analytic Hilbert space
Bergman space
composition operator
Dirichlet space
Green capacity
Hardy space
weighted analytic Hilbert space
HAL domain(s) :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
English abstract : [en]
For approximation numbers $a_n (C_\phi)$ of composition operators $C_\phi$ on weighted analytic Hilbert spaces, including the Hardy, Bergman and Dirichlet cases, with symbol $\phi$ of uniform norm $< 1$, we prove that ...
Show more >For approximation numbers $a_n (C_\phi)$ of composition operators $C_\phi$ on weighted analytic Hilbert spaces, including the Hardy, Bergman and Dirichlet cases, with symbol $\phi$ of uniform norm $< 1$, we prove that $\lim_{n \to \infty} [a_n (C_\phi)]^{1/n} = \e^{- 1/ \capa [\phi (\D)]}$, where $\capa [\phi (\D)]$ is the Green capacity of $\phi (\D)$ in $\D$. This formula holds also for $H^p$ with $1 \leq p < \infty$.Show less >
Show more >For approximation numbers $a_n (C_\phi)$ of composition operators $C_\phi$ on weighted analytic Hilbert spaces, including the Hardy, Bergman and Dirichlet cases, with symbol $\phi$ of uniform norm $< 1$, we prove that $\lim_{n \to \infty} [a_n (C_\phi)]^{1/n} = \e^{- 1/ \capa [\phi (\D)]}$, where $\capa [\phi (\D)]$ is the Green capacity of $\phi (\D)$ in $\D$. This formula holds also for $H^p$ with $1 \leq p < \infty$.Show less >
Language :
Anglais
Comment :
25 pages
Collections :
Source :
Files
- document
- Open access
- Access the document
- Spectral_radius_E.pdf
- Open access
- Access the document
- 1407.2171
- Open access
- Access the document