A spectral radius type formula for ...
Type de document :
Pré-publication ou Document de travail
Titre :
A spectral radius type formula for approximation numbers of composition operators
Auteur(s) :
Li, Daniel [Auteur correspondant]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodriguez-Piazza, Luis [Auteur]
Laboratoire de Mathématiques de Lens [LML]
Queffélec, Hervé [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Rodriguez-Piazza, Luis [Auteur]
Mot(s)-clé(s) en anglais :
approximation numbers
Bergman space
composition operator
Dirichlet space
Green capacity
Hardy space
weighted analytic Hilbert space
Bergman space
composition operator
Dirichlet space
Green capacity
Hardy space
weighted analytic Hilbert space
Discipline(s) HAL :
Mathématiques [math]/Analyse fonctionnelle [math.FA]
Résumé en anglais : [en]
For approximation numbers $a_n (C_\phi)$ of composition operators $C_\phi$ on weighted analytic Hilbert spaces, including the Hardy, Bergman and Dirichlet cases, with symbol $\phi$ of uniform norm $< 1$, we prove that ...
Lire la suite >For approximation numbers $a_n (C_\phi)$ of composition operators $C_\phi$ on weighted analytic Hilbert spaces, including the Hardy, Bergman and Dirichlet cases, with symbol $\phi$ of uniform norm $< 1$, we prove that $\lim_{n \to \infty} [a_n (C_\phi)]^{1/n} = \e^{- 1/ \capa [\phi (\D)]}$, where $\capa [\phi (\D)]$ is the Green capacity of $\phi (\D)$ in $\D$. This formula holds also for $H^p$ with $1 \leq p < \infty$.Lire moins >
Lire la suite >For approximation numbers $a_n (C_\phi)$ of composition operators $C_\phi$ on weighted analytic Hilbert spaces, including the Hardy, Bergman and Dirichlet cases, with symbol $\phi$ of uniform norm $< 1$, we prove that $\lim_{n \to \infty} [a_n (C_\phi)]^{1/n} = \e^{- 1/ \capa [\phi (\D)]}$, where $\capa [\phi (\D)]$ is the Green capacity of $\phi (\D)$ in $\D$. This formula holds also for $H^p$ with $1 \leq p < \infty$.Lire moins >
Langue :
Anglais
Commentaire :
25 pages
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Spectral_radius_E.pdf
- Accès libre
- Accéder au document
- 1407.2171
- Accès libre
- Accéder au document