On interface transmission conditions for ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
On interface transmission conditions for conservation laws with discontinuous flux of general shape
Auteur(s) :
Andreianov, Boris [Auteur]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Jacques-Louis Lions [LJLL]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Cancès, Clément [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Laboratoire Jacques-Louis Lions [LJLL]
Titre de la revue :
Journal of Hyperbolic Differential Equations
Pagination :
343-384
Éditeur :
World Scientific Publishing
Date de publication :
2015-07-15
ISSN :
0219-8916
Mot(s)-clé(s) en anglais :
discontinuous flux
hyperbolic conservation law
monotone finite volume scheme
interface coupling
boundary layer
convergent scheme
well-posedness
entropy solution
interface flux
hyperbolic conservation law
monotone finite volume scheme
interface coupling
boundary layer
convergent scheme
well-posedness
entropy solution
interface flux
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
Conservation laws of the form $\partial_t u+ \partial_x f(x;u)=0$ with space-discontinuous flux $f(x;\cdot)=f_l(\cdot)\mathbf{1}_{x<0}+f_r(\cdot)\mathbf{1}_{x>0}$ were deeply investigated in the last ten years, with a ...
Lire la suite >Conservation laws of the form $\partial_t u+ \partial_x f(x;u)=0$ with space-discontinuous flux $f(x;\cdot)=f_l(\cdot)\mathbf{1}_{x<0}+f_r(\cdot)\mathbf{1}_{x>0}$ were deeply investigated in the last ten years, with a particular emphasis in the case where the fluxes are ''bell-shaped". In this paper, we introduce and exploit the idea of transmission maps for the interface condition at the discontinuity, leading to the well-posedness for the Cauchy problem with general shape of $f_{l,r}$. The design and the convergence of monotone Finite Volume schemes based on one-sided approximate Riemann solvers is then assessed. We conclude the paper by illustrating our approach by several examples coming from real-life applications.Lire moins >
Lire la suite >Conservation laws of the form $\partial_t u+ \partial_x f(x;u)=0$ with space-discontinuous flux $f(x;\cdot)=f_l(\cdot)\mathbf{1}_{x<0}+f_r(\cdot)\mathbf{1}_{x>0}$ were deeply investigated in the last ten years, with a particular emphasis in the case where the fluxes are ''bell-shaped". In this paper, we introduce and exploit the idea of transmission maps for the interface condition at the discontinuity, leading to the well-posedness for the Cauchy problem with general shape of $f_{l,r}$. The design and the convergence of monotone Finite Volume schemes based on one-sided approximate Riemann solvers is then assessed. We conclude the paper by illustrating our approach by several examples coming from real-life applications.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- AC-NBS-PreprintVers2.pdf
- Accès libre
- Accéder au document
- AC-NBS-PreprintVers2.pdf
- Accès libre
- Accéder au document