Asymptotic behavior of the quadratic ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Asymptotic behavior of the quadratic variation of the sum of two Hermite processes of consecutive orders
Auteur(s) :
Clausel, Marianne [Auteur]
Statistique Apprentissage Machine [SAM]
Roueff, François [Auteur]
Laboratoire Traitement et Communication de l'Information [LTCI]
Taqqu, Murad [Auteur]
Department of Mathematics and Statistics [Boston]
Tudor, Ciprian A. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Statistique Apprentissage Machine [SAM]
Roueff, François [Auteur]
Laboratoire Traitement et Communication de l'Information [LTCI]
Taqqu, Murad [Auteur]
Department of Mathematics and Statistics [Boston]
Tudor, Ciprian A. [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Stochastic Processes and their Applications
Pagination :
2517-2541
Éditeur :
Elsevier
Date de publication :
2014-07
ISSN :
0304-4149
Mot(s)-clé(s) en anglais :
Hermite processes
quadratic variation
covariation
Wiener chaos
self-similar processes
long--range dependence
quadratic variation
covariation
Wiener chaos
self-similar processes
long--range dependence
Discipline(s) HAL :
Mathématiques [math]/Probabilités [math.PR]
Résumé en anglais : [en]
Hermite processes are self--similar processes with stationary increments which appear as limits of normalized sums of random variables with long range dependence. The Hermite process of order $1$ is fractional Brownian ...
Lire la suite >Hermite processes are self--similar processes with stationary increments which appear as limits of normalized sums of random variables with long range dependence. The Hermite process of order $1$ is fractional Brownian motion and the Hermite process of order $2$ is the Rosenblatt process. We consider here the sum of two Hermite processes of order $q\geq 1$ and $q+1$ and of different Hurst parameters. We then study its quadratic variations at different scales. This is akin to a wavelet decomposition. We study both the cases where the Hermite processes are dependent and where they are independent. In the dependent case, we show that the quadratic variation, suitably normalized, converges either to a normal or to a Rosenblatt distribution, whatever the order of the original Hermite processes.Lire moins >
Lire la suite >Hermite processes are self--similar processes with stationary increments which appear as limits of normalized sums of random variables with long range dependence. The Hermite process of order $1$ is fractional Brownian motion and the Hermite process of order $2$ is the Rosenblatt process. We consider here the sum of two Hermite processes of order $q\geq 1$ and $q+1$ and of different Hurst parameters. We then study its quadratic variations at different scales. This is akin to a wavelet decomposition. We study both the cases where the Hermite processes are dependent and where they are independent. In the dependent case, we show that the quadratic variation, suitably normalized, converges either to a normal or to a Rosenblatt distribution, whatever the order of the original Hermite processes.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Submission.pdf
- Accès libre
- Accéder au document
- 1402.1710
- Accès libre
- Accéder au document