Multivariate Analysis of RNA Chemistry ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Multivariate Analysis of RNA Chemistry Marks Uncovers Epitranscriptomics-Based Biomarker Signature for Adult Diffuse Glioma Diagnostics.
Author(s) :
Relier, S. [Auteur]
Institut de Génomique Fonctionnelle [IGF]
Amalric, A. [Auteur]
Institut de Génomique Fonctionnelle [IGF]
Attina, A. [Auteur]
Plateforme de Protéomique Clinique de Montpellier [PPC]
Koumare, I. B. [Auteur]
Université de Bamako
Rigau, V. [Auteur]
Centre Hospitalier Régional Universitaire [Montpellier] [CHRU Montpellier]
Burel Vandenbos, F. [Auteur]
Hôpital Cimiez [Nice] [CHU]
Fontaine, D. [Auteur]
CHU Nice [Cimiez]
Baroncini, Marc [Auteur]
Lille Neurosciences & Cognition (LilNCog) - U 1172
Hugnot, J. P. [Auteur]
Institut de Génomique Fonctionnelle [IGF]
Duffau, H. [Auteur]
Centre Hospitalier Régional Universitaire [Montpellier] [CHRU Montpellier]
Bauchet, L. [Auteur]
Centre Hospitalier Régional Universitaire [Montpellier] [CHRU Montpellier]
Hirtz, C. [Auteur]
Institut des Neurosciences de Montpellier [INM]
Rivals, E. [Auteur]
Méthodes et Algorithmes pour la Bioinformatique [LIRMM | MAB]
David, A. [Auteur]
Institut de Génomique Fonctionnelle [IGF]
Institut de Génomique Fonctionnelle [IGF]
Amalric, A. [Auteur]
Institut de Génomique Fonctionnelle [IGF]
Attina, A. [Auteur]
Plateforme de Protéomique Clinique de Montpellier [PPC]
Koumare, I. B. [Auteur]
Université de Bamako
Rigau, V. [Auteur]
Centre Hospitalier Régional Universitaire [Montpellier] [CHRU Montpellier]
Burel Vandenbos, F. [Auteur]
Hôpital Cimiez [Nice] [CHU]
Fontaine, D. [Auteur]
CHU Nice [Cimiez]
Baroncini, Marc [Auteur]

Lille Neurosciences & Cognition (LilNCog) - U 1172
Hugnot, J. P. [Auteur]
Institut de Génomique Fonctionnelle [IGF]
Duffau, H. [Auteur]
Centre Hospitalier Régional Universitaire [Montpellier] [CHRU Montpellier]
Bauchet, L. [Auteur]
Centre Hospitalier Régional Universitaire [Montpellier] [CHRU Montpellier]
Hirtz, C. [Auteur]
Institut des Neurosciences de Montpellier [INM]
Rivals, E. [Auteur]
Méthodes et Algorithmes pour la Bioinformatique [LIRMM | MAB]
David, A. [Auteur]
Institut de Génomique Fonctionnelle [IGF]
Journal title :
Analytical Chemistry
Abbreviated title :
Anal. Chem.
Volume number :
94
Publisher :
ACS
Publication date :
2022-08-23
ISSN :
1520-6882
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
One of the main challenges in cancer management relates to the discovery of reliable biomarkers, which could guide decision-making and predict treatment outcome. In particular, the rise and democratization of high-throughput ...
Show more >One of the main challenges in cancer management relates to the discovery of reliable biomarkers, which could guide decision-making and predict treatment outcome. In particular, the rise and democratization of high-throughput molecular profiling technologies bolstered the discovery of “biomarker signatures” that could maximize the prediction performance. Such an approach was largely employed from diverse OMICs data (i.e., genomics, transcriptomics, proteomics, metabolomics) but not from epitranscriptomics, which encompasses more than 100 biochemical modifications driving the post-transcriptional fate of RNA: stability, splicing, storage, and translation. We and others have studied chemical marks in isolation and associated them with cancer evolution, adaptation, as well as the response to conventional therapy. In this study, we have designed a unique pipeline combining multiplex analysis of the epitranscriptomic landscape by high-performance liquid chromatography coupled to tandem mass spectrometry with statistical multivariate analysis and machine learning approaches in order to identify biomarker signatures that could guide precision medicine and improve disease diagnosis. We applied this approach to analyze a cohort of adult diffuse glioma patients and demonstrate the existence of an “epitranscriptomics-based signature” that permits glioma grades to be discriminated and predicted with unmet accuracy. This study demonstrates that epitranscriptomics (co)evolves along cancer progression and opens new prospects in the field of omics molecular profiling and personalized medicine.Show less >
Show more >One of the main challenges in cancer management relates to the discovery of reliable biomarkers, which could guide decision-making and predict treatment outcome. In particular, the rise and democratization of high-throughput molecular profiling technologies bolstered the discovery of “biomarker signatures” that could maximize the prediction performance. Such an approach was largely employed from diverse OMICs data (i.e., genomics, transcriptomics, proteomics, metabolomics) but not from epitranscriptomics, which encompasses more than 100 biochemical modifications driving the post-transcriptional fate of RNA: stability, splicing, storage, and translation. We and others have studied chemical marks in isolation and associated them with cancer evolution, adaptation, as well as the response to conventional therapy. In this study, we have designed a unique pipeline combining multiplex analysis of the epitranscriptomic landscape by high-performance liquid chromatography coupled to tandem mass spectrometry with statistical multivariate analysis and machine learning approaches in order to identify biomarker signatures that could guide precision medicine and improve disease diagnosis. We applied this approach to analyze a cohort of adult diffuse glioma patients and demonstrate the existence of an “epitranscriptomics-based signature” that permits glioma grades to be discriminated and predicted with unmet accuracy. This study demonstrates that epitranscriptomics (co)evolves along cancer progression and opens new prospects in the field of omics molecular profiling and personalized medicine.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
Inserm
CHU Lille
Inserm
CHU Lille
Collections :
Submission date :
2024-01-16T00:52:48Z
2025-02-05T08:55:53Z
2025-02-05T08:55:53Z
Annexes
- document
- Open access
- Source du fichier principal
- Access the document