Hopf crossed module (co)algebras
Type de document :
Pré-publication ou Document de travail
Titre :
Hopf crossed module (co)algebras
Auteur(s) :
Sozer, Kursat [Auteur]
McMaster University [Hamilton, Ontario]
Virelizier, Alexis [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
McMaster University [Hamilton, Ontario]
Virelizier, Alexis [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Date de publication :
2023
Mot(s)-clé(s) en anglais :
Quantum Algebra (math.QA)
FOS: Mathematics
16T05
18M05
18A50
18G45
FOS: Mathematics
16T05
18M05
18A50
18G45
Discipline(s) HAL :
Mathématiques [math]/Algèbres quantiques [math.QA]
Résumé en anglais : [en]
Given a crossed module $χ$, we introduce Hopf $χ$-(co)algebras which generalize Hopf algebras and Hopf group-(co)algebras. We interpret them as Hopf algebras in some symmetric monoidal category. We prove that their categories ...
Lire la suite >Given a crossed module $χ$, we introduce Hopf $χ$-(co)algebras which generalize Hopf algebras and Hopf group-(co)algebras. We interpret them as Hopf algebras in some symmetric monoidal category. We prove that their categories of representations are monoidal and $χ$-graded (meaning that both objects and morphisms have degrees which are related via $χ$).Lire moins >
Lire la suite >Given a crossed module $χ$, we introduce Hopf $χ$-(co)algebras which generalize Hopf algebras and Hopf group-(co)algebras. We interpret them as Hopf algebras in some symmetric monoidal category. We prove that their categories of representations are monoidal and $χ$-graded (meaning that both objects and morphisms have degrees which are related via $χ$).Lire moins >
Langue :
Anglais
Collections :
Source :
Fichiers
- 2305.15485
- Accès libre
- Accéder au document