Cloud information content in epic/dscovr's ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Cloud information content in epic/dscovr's oxygen a- and b-band channels: an optimal estimation approach
Auteur(s) :
Davis, Anthony B. [Auteur]
Jet Propulsion Laboratory [JPL]
Merlin, Guillaume [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Cornet, Celine [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Couillard-Labonnotte, Laurent [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Riedi, Jerome [Auteur]
interaction Clouds Aerosols Radiations - ICARE/AERIS Data and Services Center - UMS 2877 [ICARE]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Ferlay, Nicolas [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Dubuisson, Philippe [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Min, Qilong [Auteur]
Atmospheric Sciences Research Center [ASRC]
Yang, Yuekui [Auteur]
NASA Goddard Space Flight Center [GSFC]
Marshak, Alexander [Auteur]
NASA Goddard Space Flight Center [GSFC]
Jet Propulsion Laboratory [JPL]
Merlin, Guillaume [Auteur]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Cornet, Celine [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Couillard-Labonnotte, Laurent [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Riedi, Jerome [Auteur]
interaction Clouds Aerosols Radiations - ICARE/AERIS Data and Services Center - UMS 2877 [ICARE]
Laboratoire d’Optique Atmosphérique - UMR 8518 [LOA]
Ferlay, Nicolas [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Dubuisson, Philippe [Auteur]
Laboratoire d'Optique Atmosphérique (LOA) - UMR 8518
Min, Qilong [Auteur]
Atmospheric Sciences Research Center [ASRC]
Yang, Yuekui [Auteur]
NASA Goddard Space Flight Center [GSFC]
Marshak, Alexander [Auteur]
NASA Goddard Space Flight Center [GSFC]
Titre de la revue :
Journal of Quantitative Spectroscopy and Radiative Transfer
Nom court de la revue :
J. Quant. Spectrosc. Radiat. Transf.
Numéro :
216
Date de publication :
2018-09-01
ISSN :
0022-4073
Mot(s)-clé(s) en anglais :
Oxygen A-band
Oxygen B-band
Multiple scattering
Radiative transfer
Remote sensing
Cloud top height
Geometrical cloud thickness
DSCOVR
EPIC
Optimal estimation theory
Information content analysis
Oxygen B-band
Multiple scattering
Radiative transfer
Remote sensing
Cloud top height
Geometrical cloud thickness
DSCOVR
EPIC
Optimal estimation theory
Information content analysis
Discipline(s) HAL :
Physique [physics]
Résumé en anglais : [en]
We use computational 1D radiative transfer modeling and the formalism of optimal estimation to quantify the cloud information content in the oxygen A- and B-band channels of the Earth Polychromatic Imaging Camera (EPIC) ...
Lire la suite >We use computational 1D radiative transfer modeling and the formalism of optimal estimation to quantify the cloud information content in the oxygen A- and B-band channels of the Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate ObserVatoRy (DSCOVR) platform. EPIC/DSCOVR images the sunlit hemisphere of our planet from ≈ 1,500,000 km away with ≈ 8 km pixels at the center of the disc. EPIC pixel-scale spectral data is used to estimate in-band/continuum radiance ratios for O2’s A- and B-bands, from which one can derive, in principle, both cloud top height and cloud geometrical thickness. We use the general framework of optimal estimation theory to show that in practice, once measurement error is factored in, only cloud top height can be reliably inferred. With that limitation in mind, we discuss the ramifications for retrieval algorithm development.Lire moins >
Lire la suite >We use computational 1D radiative transfer modeling and the formalism of optimal estimation to quantify the cloud information content in the oxygen A- and B-band channels of the Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate ObserVatoRy (DSCOVR) platform. EPIC/DSCOVR images the sunlit hemisphere of our planet from ≈ 1,500,000 km away with ≈ 8 km pixels at the center of the disc. EPIC pixel-scale spectral data is used to estimate in-band/continuum radiance ratios for O2’s A- and B-bands, from which one can derive, in principle, both cloud top height and cloud geometrical thickness. We use the general framework of optimal estimation theory to show that in practice, once measurement error is factored in, only cloud top height can be reliably inferred. With that limitation in mind, we discuss the ramifications for retrieval algorithm development.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
CNRS
Université de Lille
Université de Lille
Collections :
Date de dépôt :
2024-01-30T11:45:57Z
2024-02-21T13:18:20Z
2024-02-21T13:18:20Z