Assessment of Essential Information in the ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Assessment of Essential Information in the Fourier Domain to Accelerate Raman Hyperspectral Microimaging.
Author(s) :
Coic, Laureen [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Vitale, Raffaele [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Moreau, Myriam [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Rousseau, D. [Auteur]
Laboratoire Angevin de Recherche en Ingénierie des Systèmes [LARIS]
De Morais Goulart, José Henrique [Auteur]
Ecole Nationale Supérieure d'Electrotechnique, d'Electronique, d'Informatique, d'Hydraulique et de Télécommunications [ENSEEIHT]
Institut de recherche en informatique de Toulouse [IRIT]
Dobigeon, N. [Auteur]
Ruckebusch, Cyril [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Vitale, Raffaele [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Moreau, Myriam [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Rousseau, D. [Auteur]
Laboratoire Angevin de Recherche en Ingénierie des Systèmes [LARIS]
De Morais Goulart, José Henrique [Auteur]
Ecole Nationale Supérieure d'Electrotechnique, d'Electronique, d'Informatique, d'Hydraulique et de Télécommunications [ENSEEIHT]
Institut de recherche en informatique de Toulouse [IRIT]
Dobigeon, N. [Auteur]
Ruckebusch, Cyril [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Journal title :
Analytical Chemistry
Abbreviated title :
Anal Chem
Publication date :
2023-10-13
ISSN :
1520-6882
HAL domain(s) :
Chimie/Chimie théorique et/ou physique
English abstract : [en]
In the context of multivariate curve resolution (MCR) and spectral unmixing, essential information (EI) corresponds to the most linearly dissimilar rows and/or columns of a two-way data matrix. In recent works, the assessment ...
Show more >In the context of multivariate curve resolution (MCR) and spectral unmixing, essential information (EI) corresponds to the most linearly dissimilar rows and/or columns of a two-way data matrix. In recent works, the assessment of EI has been revealed to be a very useful practical tool to select the most relevant spectral information before MCR analysis, key features being speed and compression ability. However, the canonical approach relies on the principal component analysis to evaluate the convex hull that encapsulates the data structure in the normalized score space. This implies that the evaluation of the essentiality of each spectrum can only be achieved after all the spectra have been acquired by the instrument. This paper proposes a new approach to extract EI in the Fourier domain (EIFD). Spectral information is transformed into Fourier coefficients, and EI is assessed from a convex hull analysis of the data point cloud in the 2D phasor plots of a few selected harmonics. Because the coordinate system of a phasor plot does not depend on the data themselves, the evaluation of the essentiality of the information carried by each spectrum can be achieved individually and independently from the others. As a result, time-consuming operations like Raman spectral imaging can be significantly accelerated exploiting a chemometric-driven (i.e., based on the EI content of a spectral pixel) procedure for data acquisition and targeted sampling. The usefulness of EIFD is shown by analyzing Raman hyperspectral microimaging data, demonstrating a potential 50-fold acceleration of Raman acquisition.Show less >
Show more >In the context of multivariate curve resolution (MCR) and spectral unmixing, essential information (EI) corresponds to the most linearly dissimilar rows and/or columns of a two-way data matrix. In recent works, the assessment of EI has been revealed to be a very useful practical tool to select the most relevant spectral information before MCR analysis, key features being speed and compression ability. However, the canonical approach relies on the principal component analysis to evaluate the convex hull that encapsulates the data structure in the normalized score space. This implies that the evaluation of the essentiality of each spectrum can only be achieved after all the spectra have been acquired by the instrument. This paper proposes a new approach to extract EI in the Fourier domain (EIFD). Spectral information is transformed into Fourier coefficients, and EI is assessed from a convex hull analysis of the data point cloud in the 2D phasor plots of a few selected harmonics. Because the coordinate system of a phasor plot does not depend on the data themselves, the evaluation of the essentiality of the information carried by each spectrum can be achieved individually and independently from the others. As a result, time-consuming operations like Raman spectral imaging can be significantly accelerated exploiting a chemometric-driven (i.e., based on the EI content of a spectral pixel) procedure for data acquisition and targeted sampling. The usefulness of EIFD is shown by analyzing Raman hyperspectral microimaging data, demonstrating a potential 50-fold acceleration of Raman acquisition.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
CNRS
Collections :
Submission date :
2024-02-28T22:07:20Z
2024-03-11T12:17:55Z
2024-03-11T12:17:55Z
Files
- coic-et-al-2023-assessment-of-essential-information-in-the-fourier-domain-to-accelerate-raman-hyperspectral-microimaging.pdf
- Version éditeur
- Open access
- Access the document
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States