Assessment of the UCST-type liquid-liquid ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
PMID :
URL permanente :
Titre :
Assessment of the UCST-type liquid-liquid phase separation mechanism of imidazolium-based ionic liquid, [C <sub>8</sub>mim][TFSI], and 1,4-dioxane by SANS, NMR, IR, and MD simulations.
Auteur(s) :
Kawano, M. [Auteur]
Sadakane, K. [Auteur]
Iwase, H. [Auteur]
Matsugami, M. [Auteur]
Marekha, B. A. [Auteur]
Idrissi, Nacer [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Takamuku, T. [Auteur]
Sadakane, K. [Auteur]
Iwase, H. [Auteur]
Matsugami, M. [Auteur]
Marekha, B. A. [Auteur]
Idrissi, Nacer [Auteur]

Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Takamuku, T. [Auteur]
Titre de la revue :
Physical Chemistry Chemical Physics
Nom court de la revue :
Phys Chem Chem Phys
Date de publication :
2021-11-02
ISSN :
1463-9084
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
Liquid–liquid phase separation of binary systems for imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Cnmim][TFSI], where n represents the alkyl chain length of the ...
Lire la suite >Liquid–liquid phase separation of binary systems for imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Cnmim][TFSI], where n represents the alkyl chain length of the cation), with 1,4-dioxane (1,4-DIO) was observed as a function of temperature and 1,4-DIO mole fraction, x1,4-DIO. The phase diagrams obtained for [Cnmim][TFSI]–1,4-DIO systems showed that the miscible region becomes wider with an increase in the alkyl chain length, n. For n = 6 and 8, an upper critical solution temperature (UCST) was found. To clarify the mechanism of the UCST-type phase separation, small-angle neutron scattering (SANS) experiments were conducted on the [C8mim][TFSI]–1,4-DIO-d8 system at several x1,4-DIO. The critical exponents of γ and ν determined from the SANS experiments showed that phase separation of the system at the UCST mole fraction occurs via the 3D-Ising mechanism, while that on both sides of UCST occurs via the mean field mechanism. Thus, the crossover of mechanism was observed for this system. The microscopic interactions among the cation, anion, and 1,4-DIO were elucidated using 1H and 13C NMR and IR spectroscopic techniques, together with the theoretical method of molecular dynamics (MD) simulations. The results on the microscopic interactions suggest that 1,4-DIO molecules cannot strongly interact with H atoms on the imidazolium ring, while they interact with the octyl chain of the cation through dispersion force. With a decrease in temperature, 1,4-DIO molecules gradually aggregate to form 1,4-DIO clusters in the binary solutions. The strengthening of the C–H⋯O interaction between 1,4-DIO molecules by cooling is the key to the phase separation. Of course, the electrostatic interaction between the cations and anions results in the formation of IL clusters. When IL clusters are excluded from 1,4-DIO clusters, liquid–liquid phase separation occurs. Accordingly, the balance between the electrostatic force between the cations and anions and the C–H⋯O interaction between the 1,4-DIO determines the 3D-Ising or the mean field mechanism of phase separation.Lire moins >
Lire la suite >Liquid–liquid phase separation of binary systems for imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Cnmim][TFSI], where n represents the alkyl chain length of the cation), with 1,4-dioxane (1,4-DIO) was observed as a function of temperature and 1,4-DIO mole fraction, x1,4-DIO. The phase diagrams obtained for [Cnmim][TFSI]–1,4-DIO systems showed that the miscible region becomes wider with an increase in the alkyl chain length, n. For n = 6 and 8, an upper critical solution temperature (UCST) was found. To clarify the mechanism of the UCST-type phase separation, small-angle neutron scattering (SANS) experiments were conducted on the [C8mim][TFSI]–1,4-DIO-d8 system at several x1,4-DIO. The critical exponents of γ and ν determined from the SANS experiments showed that phase separation of the system at the UCST mole fraction occurs via the 3D-Ising mechanism, while that on both sides of UCST occurs via the mean field mechanism. Thus, the crossover of mechanism was observed for this system. The microscopic interactions among the cation, anion, and 1,4-DIO were elucidated using 1H and 13C NMR and IR spectroscopic techniques, together with the theoretical method of molecular dynamics (MD) simulations. The results on the microscopic interactions suggest that 1,4-DIO molecules cannot strongly interact with H atoms on the imidazolium ring, while they interact with the octyl chain of the cation through dispersion force. With a decrease in temperature, 1,4-DIO molecules gradually aggregate to form 1,4-DIO clusters in the binary solutions. The strengthening of the C–H⋯O interaction between 1,4-DIO molecules by cooling is the key to the phase separation. Of course, the electrostatic interaction between the cations and anions results in the formation of IL clusters. When IL clusters are excluded from 1,4-DIO clusters, liquid–liquid phase separation occurs. Accordingly, the balance between the electrostatic force between the cations and anions and the C–H⋯O interaction between the 1,4-DIO determines the 3D-Ising or the mean field mechanism of phase separation.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
CNRS
Collections :
Date de dépôt :
2024-02-28T22:36:37Z
2024-03-18T12:57:55Z
2024-03-18T12:57:55Z