Scaling behaviours of deep learning and ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Scaling behaviours of deep learning and linear algorithms for the prediction of stroke severity.
Author(s) :
Bourached, A. [Auteur]
Bonkhoff, Anna K. [Auteur]
Harvard Medical School [Boston] [HMS]
Schirmer, M. D. [Auteur]
Regenhardt, R. W. [Auteur]
Bretzner, Martin [Auteur]
Lille Neurosciences & Cognition - U 1172 [LilNCog]
Hong, S. [Auteur]
Dalca, A. V. [Auteur]
Giese, A. K. [Auteur]
Winzeck, S. [Auteur]
Jern, C. [Auteur]
Lindgren, A. G. [Auteur]
Maguire, J. [Auteur]
Wu, O. [Auteur]
Rhee, J. [Auteur]
Kimchi, E. Y. [Auteur]
Rost, N. S. [Auteur]
Bonkhoff, Anna K. [Auteur]
Harvard Medical School [Boston] [HMS]
Schirmer, M. D. [Auteur]
Regenhardt, R. W. [Auteur]
Bretzner, Martin [Auteur]
Lille Neurosciences & Cognition - U 1172 [LilNCog]
Hong, S. [Auteur]
Dalca, A. V. [Auteur]
Giese, A. K. [Auteur]
Winzeck, S. [Auteur]
Jern, C. [Auteur]
Lindgren, A. G. [Auteur]
Maguire, J. [Auteur]
Wu, O. [Auteur]
Rhee, J. [Auteur]
Kimchi, E. Y. [Auteur]
Rost, N. S. [Auteur]
Journal title :
Brain Communications
Abbreviated title :
Brain Commun
Volume number :
6
Pages :
fcae007
Publisher :
Oxford Academic
Publication date :
2024-01-29
ISSN :
2632-1297
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
Deep learning has allowed for remarkable progress in many medical scenarios. Deep learning prediction models often require 105–107 examples. It is currently unknown whether deep learning can also enhance predictions of ...
Show more >Deep learning has allowed for remarkable progress in many medical scenarios. Deep learning prediction models often require 105–107 examples. It is currently unknown whether deep learning can also enhance predictions of symptoms post-stroke in real-world samples of stroke patients that are often several magnitudes smaller. Such stroke outcome predictions however could be particularly instrumental in guiding acute clinical and rehabilitation care decisions. We here compared the capacities of classically used linear and novel deep learning algorithms in their prediction of stroke severity. Our analyses relied on a total of 1430 patients assembled from the MRI-Genetics Interface Exploration collaboration and a Massachusetts General Hospital–based study. The outcome of interest was National Institutes of Health Stroke Scale–based stroke severity in the acute phase after ischaemic stroke onset, which we predict by means of MRI-derived lesion location. We automatically derived lesion segmentations from diffusion-weighted clinical MRI scans, performed spatial normalization and included a principal component analysis step, retaining 95% of the variance of the original data. We then repeatedly separated a train, validation and test set to investigate the effects of sample size; we subsampled the train set to 100, 300 and 900 and trained the algorithms to predict the stroke severity score for each sample size with regularized linear regression and an eight-layered neural network. We selected hyperparameters on the validation set. We evaluated model performance based on the explained variance (R2) in the test set. While linear regression performed significantly better for a sample size of 100 patients, deep learning started to significantly outperform linear regression when trained on 900 patients. Average prediction performance improved by ∼20% when increasing the sample size 9× [maximum for 100 patients: 0.279 ± 0.005 (R2, 95% confidence interval), 900 patients: 0.337 ± 0.006]. In summary, for sample sizes of 900 patients, deep learning showed a higher prediction performance than typically employed linear methods. These findings suggest the existence of non-linear relationships between lesion location and stroke severity that can be utilized for an improved prediction performance for larger sample sizes.Show less >
Show more >Deep learning has allowed for remarkable progress in many medical scenarios. Deep learning prediction models often require 105–107 examples. It is currently unknown whether deep learning can also enhance predictions of symptoms post-stroke in real-world samples of stroke patients that are often several magnitudes smaller. Such stroke outcome predictions however could be particularly instrumental in guiding acute clinical and rehabilitation care decisions. We here compared the capacities of classically used linear and novel deep learning algorithms in their prediction of stroke severity. Our analyses relied on a total of 1430 patients assembled from the MRI-Genetics Interface Exploration collaboration and a Massachusetts General Hospital–based study. The outcome of interest was National Institutes of Health Stroke Scale–based stroke severity in the acute phase after ischaemic stroke onset, which we predict by means of MRI-derived lesion location. We automatically derived lesion segmentations from diffusion-weighted clinical MRI scans, performed spatial normalization and included a principal component analysis step, retaining 95% of the variance of the original data. We then repeatedly separated a train, validation and test set to investigate the effects of sample size; we subsampled the train set to 100, 300 and 900 and trained the algorithms to predict the stroke severity score for each sample size with regularized linear regression and an eight-layered neural network. We selected hyperparameters on the validation set. We evaluated model performance based on the explained variance (R2) in the test set. While linear regression performed significantly better for a sample size of 100 patients, deep learning started to significantly outperform linear regression when trained on 900 patients. Average prediction performance improved by ∼20% when increasing the sample size 9× [maximum for 100 patients: 0.279 ± 0.005 (R2, 95% confidence interval), 900 patients: 0.337 ± 0.006]. In summary, for sample sizes of 900 patients, deep learning showed a higher prediction performance than typically employed linear methods. These findings suggest the existence of non-linear relationships between lesion location and stroke severity that can be utilized for an improved prediction performance for larger sample sizes.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
Inserm
CHU Lille
Inserm
CHU Lille
Collections :
Submission date :
2024-05-06T22:46:13Z
2024-09-18T09:17:50Z
2024-09-18T09:17:50Z
Files
- fcae007.pdf
- Non spécifié
- Open access
- Access the document