Equivariant Hopf Bifurcation in a Class ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Equivariant Hopf Bifurcation in a Class of Partial Functional Differential Equations on a Circular Domain
Auteur(s) :
Chen, Y. Q. [Auteur]
Harbin Institute of Technology [HIT]
Zeng, Xianyi [Auteur]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Lehigh University [Bethlehem]
Niu, B. [Auteur]
Harbin Institute of Technology [HIT]
Harbin Institute of Technology [HIT]
Zeng, Xianyi [Auteur]
Génie des Matériaux Textiles - ULR 2461 [GEMTEX]
Lehigh University [Bethlehem]
Niu, B. [Auteur]
Harbin Institute of Technology [HIT]
Titre de la revue :
International Journal of Bifurcation and Chaos
Nom court de la revue :
Int. J. Bifurcation Chaos
Numéro :
34
Pagination :
-
Date de publication :
2024-06-10
ISSN :
0218-1274
Mot(s)-clé(s) en anglais :
Circular domain
partial functional differential equation
equivariant Hopf bifurcation
standing wave
rotating wave
partial functional differential equation
equivariant Hopf bifurcation
standing wave
rotating wave
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
Circular domains frequently appear in mathematical modeling in the fields of ecology, biology and chemistry. In this paper, we investigate the equivariant Hopf bifurcation of partial functional differential equations with ...
Lire la suite >Circular domains frequently appear in mathematical modeling in the fields of ecology, biology and chemistry. In this paper, we investigate the equivariant Hopf bifurcation of partial functional differential equations with Neumann boundary condition on a two-dimensional disk. The properties of these bifurcations at equilibriums are analyzed rigorously by studying the equivariant normal forms. Two reaction–diffusion systems with discrete time delays are selected as numerical examples to verify the theoretical results, in which spatially inhomogeneous periodic solutions including standing waves and rotating waves, and spatially homogeneous periodic solutions are found near the bifurcation points.Lire moins >
Lire la suite >Circular domains frequently appear in mathematical modeling in the fields of ecology, biology and chemistry. In this paper, we investigate the equivariant Hopf bifurcation of partial functional differential equations with Neumann boundary condition on a two-dimensional disk. The properties of these bifurcations at equilibriums are analyzed rigorously by studying the equivariant normal forms. Two reaction–diffusion systems with discrete time delays are selected as numerical examples to verify the theoretical results, in which spatially inhomogeneous periodic solutions including standing waves and rotating waves, and spatially homogeneous periodic solutions are found near the bifurcation points.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
ENSAIT
Junia HEI
ENSAIT
Junia HEI
Collections :
Date de dépôt :
2024-06-11T21:00:34Z
2025-02-28T09:41:04Z
2025-02-28T09:41:04Z