Large-area ultrathin 2D Co(OH)<sub>2</sub> ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Large-area ultrathin 2D Co(OH)<sub>2</sub> nanosheets: a bifunctional electrode material for supercapacitor and water oxidation
Author(s) :
Jagdale, P. B. [Auteur]
Bangalore University
Patil, S. A. [Auteur]
Bangalore University
Sfeir, Amanda [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Barman, N. [Auteur]
Iqbal, A. [Auteur]
Royer, sebastien [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Thapa, R. [Auteur]
Samal, A. K. [Auteur]
Bangalore University
Ghosh, D. [Auteur]
Bangalore University
Saxena, M. [Auteur]
Bangalore University
Barman, N. [Auteur]
Bangalore University
Patil, S. A. [Auteur]
Bangalore University
Sfeir, Amanda [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Barman, N. [Auteur]
Iqbal, A. [Auteur]
Royer, sebastien [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Thapa, R. [Auteur]
Samal, A. K. [Auteur]
Bangalore University
Ghosh, D. [Auteur]
Bangalore University
Saxena, M. [Auteur]
Bangalore University
Barman, N. [Auteur]
Journal title :
Mater. Today Energy
Abbreviated title :
Mater. Today Energy
Volume number :
44
Pages :
101608
Publication date :
2024-07-14
ISSN :
2468-6069
English keyword(s) :
Large-area
Energy storage
Ionic layer epitaxy (ILE)
Oxygen evolution reaction
Volumetric capacitance
Energy storage
Ionic layer epitaxy (ILE)
Oxygen evolution reaction
Volumetric capacitance
HAL domain(s) :
Chimie/Catalyse
English abstract : [en]
Ultrathin film of active materials having thickness <5 nm emerged as a promising candidate for miniaturized energy storage and conversion devices. However, the small lateral size restricts its real device applications. ...
Show more >Ultrathin film of active materials having thickness <5 nm emerged as a promising candidate for miniaturized energy storage and conversion devices. However, the small lateral size restricts its real device applications. Herein, we report large area, 2D, ultrathin (thickness: 4.3 ± 0.3 nm) Co(OH)2 nanosheets as bifunctional electrode material for supercapacitor and oxygen evolution reaction developed by ionic layer epitaxy method at the water-air interface. The symmetric supercapacitor device exhibited excellent volumetric capacitance of 2313 F/cm3 at 0.4 mA/cm2 current density. Additionally, it exhibited a remarkable volumetric energy density of 0.205 Wh/cm3 at a power density of 0.145 W/cm3, which is better than reported 2D electrode materials. Furthermore, the cobalt hydroxide (Co(OH)2) ultrathin-film electrodes showed improved oxygen evolution reaction electrocatalytic activity with low overpotential (ƞ10, 330 mV) and Tafel slope (47 mV/dec). The structural and morphological investigations after long-term operations show substantial stability of the electrode material. The theoretical investigations of electronic structures, quantum capacitance, and free energy profiles for the oxygen evolution reaction mechanism corroborate the experimental results.Show less >
Show more >Ultrathin film of active materials having thickness <5 nm emerged as a promising candidate for miniaturized energy storage and conversion devices. However, the small lateral size restricts its real device applications. Herein, we report large area, 2D, ultrathin (thickness: 4.3 ± 0.3 nm) Co(OH)2 nanosheets as bifunctional electrode material for supercapacitor and oxygen evolution reaction developed by ionic layer epitaxy method at the water-air interface. The symmetric supercapacitor device exhibited excellent volumetric capacitance of 2313 F/cm3 at 0.4 mA/cm2 current density. Additionally, it exhibited a remarkable volumetric energy density of 0.205 Wh/cm3 at a power density of 0.145 W/cm3, which is better than reported 2D electrode materials. Furthermore, the cobalt hydroxide (Co(OH)2) ultrathin-film electrodes showed improved oxygen evolution reaction electrocatalytic activity with low overpotential (ƞ10, 330 mV) and Tafel slope (47 mV/dec). The structural and morphological investigations after long-term operations show substantial stability of the electrode material. The theoretical investigations of electronic structures, quantum capacitance, and free energy profiles for the oxygen evolution reaction mechanism corroborate the experimental results.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Research team(s) :
Matériaux pour la catalyse (MATCAT)
Submission date :
2024-07-17T21:03:39Z
2024-08-23T08:49:29Z
2024-08-23T08:49:29Z