Large-area ultrathin 2D Co(OH)<sub>2</sub> ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Large-area ultrathin 2D Co(OH)<sub>2</sub> nanosheets: a bifunctional electrode material for supercapacitor and water oxidation
Auteur(s) :
Jagdale, P. B. [Auteur]
Bangalore University
Patil, S. A. [Auteur]
Bangalore University
Sfeir, Amanda [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Barman, N. [Auteur]
Iqbal, A. [Auteur]
Royer, sebastien [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Thapa, R. [Auteur]
Samal, A. K. [Auteur]
Bangalore University
Ghosh, D. [Auteur]
Bangalore University
Saxena, M. [Auteur]
Bangalore University
Barman, N. [Auteur]
Bangalore University
Patil, S. A. [Auteur]
Bangalore University
Sfeir, Amanda [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Barman, N. [Auteur]
Iqbal, A. [Auteur]
Royer, sebastien [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Thapa, R. [Auteur]
Samal, A. K. [Auteur]
Bangalore University
Ghosh, D. [Auteur]
Bangalore University
Saxena, M. [Auteur]
Bangalore University
Barman, N. [Auteur]
Titre de la revue :
Mater. Today Energy
Nom court de la revue :
Mater. Today Energy
Numéro :
44
Pagination :
101608
Date de publication :
2024-07-14
ISSN :
2468-6069
Mot(s)-clé(s) en anglais :
Large-area
Energy storage
Ionic layer epitaxy (ILE)
Oxygen evolution reaction
Volumetric capacitance
Energy storage
Ionic layer epitaxy (ILE)
Oxygen evolution reaction
Volumetric capacitance
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
Ultrathin film of active materials having thickness <5 nm emerged as a promising candidate for miniaturized energy storage and conversion devices. However, the small lateral size restricts its real device applications. ...
Lire la suite >Ultrathin film of active materials having thickness <5 nm emerged as a promising candidate for miniaturized energy storage and conversion devices. However, the small lateral size restricts its real device applications. Herein, we report large area, 2D, ultrathin (thickness: 4.3 ± 0.3 nm) Co(OH)2 nanosheets as bifunctional electrode material for supercapacitor and oxygen evolution reaction developed by ionic layer epitaxy method at the water-air interface. The symmetric supercapacitor device exhibited excellent volumetric capacitance of 2313 F/cm3 at 0.4 mA/cm2 current density. Additionally, it exhibited a remarkable volumetric energy density of 0.205 Wh/cm3 at a power density of 0.145 W/cm3, which is better than reported 2D electrode materials. Furthermore, the cobalt hydroxide (Co(OH)2) ultrathin-film electrodes showed improved oxygen evolution reaction electrocatalytic activity with low overpotential (ƞ10, 330 mV) and Tafel slope (47 mV/dec). The structural and morphological investigations after long-term operations show substantial stability of the electrode material. The theoretical investigations of electronic structures, quantum capacitance, and free energy profiles for the oxygen evolution reaction mechanism corroborate the experimental results.Lire moins >
Lire la suite >Ultrathin film of active materials having thickness <5 nm emerged as a promising candidate for miniaturized energy storage and conversion devices. However, the small lateral size restricts its real device applications. Herein, we report large area, 2D, ultrathin (thickness: 4.3 ± 0.3 nm) Co(OH)2 nanosheets as bifunctional electrode material for supercapacitor and oxygen evolution reaction developed by ionic layer epitaxy method at the water-air interface. The symmetric supercapacitor device exhibited excellent volumetric capacitance of 2313 F/cm3 at 0.4 mA/cm2 current density. Additionally, it exhibited a remarkable volumetric energy density of 0.205 Wh/cm3 at a power density of 0.145 W/cm3, which is better than reported 2D electrode materials. Furthermore, the cobalt hydroxide (Co(OH)2) ultrathin-film electrodes showed improved oxygen evolution reaction electrocatalytic activity with low overpotential (ƞ10, 330 mV) and Tafel slope (47 mV/dec). The structural and morphological investigations after long-term operations show substantial stability of the electrode material. The theoretical investigations of electronic structures, quantum capacitance, and free energy profiles for the oxygen evolution reaction mechanism corroborate the experimental results.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
Matériaux pour la catalyse (MATCAT)
Date de dépôt :
2024-07-17T21:03:39Z
2024-08-23T08:49:29Z
2024-08-23T08:49:29Z