The role of cyclodextrins in the acceleration ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
The role of cyclodextrins in the acceleration of the reaction rate in a biphasic hydroformylations
Auteur(s) :
Nasse, K. E. [Auteur]
Max Planck Institute for Chemical Energy Conversion
Heinen, F. S. [Auteur]
Max Planck Institute for Chemical Energy Conversion
Institut für Technische und Makromolekulare Chemie
Pawlowsky, N. [Auteur]
Max Planck Institute for Chemical Energy Conversion
Schrimpf, M. [Auteur]
Max Planck Institute for Chemical Energy Conversion
Monflier, Eric [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Tilloy, Sebastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Leitner, W. [Auteur]
Institut für Technische und Makromolekulare Chemie
Max-Planck-Institut für Kohlenforschung (Coal Research)
Vorholt, A. J. [Auteur]
Max Planck Institute for Chemical Energy Conversion
Max Planck Institute for Chemical Energy Conversion
Heinen, F. S. [Auteur]
Max Planck Institute for Chemical Energy Conversion
Institut für Technische und Makromolekulare Chemie
Pawlowsky, N. [Auteur]
Max Planck Institute for Chemical Energy Conversion
Schrimpf, M. [Auteur]
Max Planck Institute for Chemical Energy Conversion
Monflier, Eric [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Tilloy, Sebastien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Leitner, W. [Auteur]
Institut für Technische und Makromolekulare Chemie
Max-Planck-Institut für Kohlenforschung (Coal Research)
Vorholt, A. J. [Auteur]
Max Planck Institute for Chemical Energy Conversion
Titre de la revue :
Chem. Eng. J.
Nom court de la revue :
Chem. Eng. J.
Numéro :
497
Pagination :
154114
Date de publication :
2024-11-19
ISSN :
1385-8947
Mot(s)-clé(s) en anglais :
Boroscopy
Hydroformylation
Kinetics
Liquid-Liquid-Gas systems
Intensified Reactions
Hydroformylation
Kinetics
Liquid-Liquid-Gas systems
Intensified Reactions
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
Water based biphasic hydroformylation assisted by cyclodextrins is known for enhanced reaction rates in comparison to the non-assisted biphasic hydroformylation. In this paper, the liquid–liquid interface of the hydroformylation ...
Lire la suite >Water based biphasic hydroformylation assisted by cyclodextrins is known for enhanced reaction rates in comparison to the non-assisted biphasic hydroformylation. In this paper, the liquid–liquid interface of the hydroformylation of 1–octene, enhanced by randomly methylated-β cyclodextrins (RAME-β cyclodextrins), was examined for the first time using an in-situ image-based boroscopic technology. This technique enables the observation of the liquid–liquid interfacial area (aLL) during the reaction and under reaction conditions, facilitating an explicit analysis of the droplet population. In this study defined mixtures of the reaction components with RAME-β cyclodextrins increased the aLL by 84 %. A kinetic study showed that RAME-β cyclodextrins reduce the rate limiting effect of the nonanal concentration in the two phasic water/octene system on the interphase. The kinetic expression shows consequently higher reaction rates for this three-phase conversion, leading to a 387 % increase in aldehyde yield. When comparing four different amounts of RAME-β cyclodextrins (nCD:nRh(acac)(CO)2 = 0 / 12:1 / 24:1 / 50:1), we observed a decreasing dependency of the reaction rates on the conversion progress and therefore on the nonanal formation for higher cyclodextrin concentrations. A recovery test of the aqueous phase involving nonanal and 1-octene reveals a drastically increased concentration of 1029 % 1-octene (coctene = 1.08 10-3 mg mg−1) and 13676 % nonanal (cnonanal = 14.41 10–3 mg mg−1) after the addition of 0.002 mol RAME–β cyclodextrins. These findings affirm that RAME-β cyclodextrins primarily remove nonanal from the interfacial region while facilitating an increased availability of 1-octene for the surface bound reaction.Lire moins >
Lire la suite >Water based biphasic hydroformylation assisted by cyclodextrins is known for enhanced reaction rates in comparison to the non-assisted biphasic hydroformylation. In this paper, the liquid–liquid interface of the hydroformylation of 1–octene, enhanced by randomly methylated-β cyclodextrins (RAME-β cyclodextrins), was examined for the first time using an in-situ image-based boroscopic technology. This technique enables the observation of the liquid–liquid interfacial area (aLL) during the reaction and under reaction conditions, facilitating an explicit analysis of the droplet population. In this study defined mixtures of the reaction components with RAME-β cyclodextrins increased the aLL by 84 %. A kinetic study showed that RAME-β cyclodextrins reduce the rate limiting effect of the nonanal concentration in the two phasic water/octene system on the interphase. The kinetic expression shows consequently higher reaction rates for this three-phase conversion, leading to a 387 % increase in aldehyde yield. When comparing four different amounts of RAME-β cyclodextrins (nCD:nRh(acac)(CO)2 = 0 / 12:1 / 24:1 / 50:1), we observed a decreasing dependency of the reaction rates on the conversion progress and therefore on the nonanal formation for higher cyclodextrin concentrations. A recovery test of the aqueous phase involving nonanal and 1-octene reveals a drastically increased concentration of 1029 % 1-octene (coctene = 1.08 10-3 mg mg−1) and 13676 % nonanal (cnonanal = 14.41 10–3 mg mg−1) after the addition of 0.002 mol RAME–β cyclodextrins. These findings affirm that RAME-β cyclodextrins primarily remove nonanal from the interfacial region while facilitating an increased availability of 1-octene for the surface bound reaction.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
Catalyse et chimie supramoléculaire (CASU)
Date de dépôt :
2024-12-05T22:02:29Z
2024-12-13T10:59:12Z
2024-12-13T10:59:12Z