Hyperexponential Stabilization of Double ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Hyperexponential Stabilization of Double Integrator with Unmatched Perturbations
Auteur(s) :
Labbadi, Moussa [Auteur]
Aix Marseille Université [AMU]
Laboratoire d'Informatique et des Systèmes (LIS) (Marseille, Toulon) [LIS]
Contrôle et optimisation des systèmes et énergie [COSE]
Efimov, Denis [Auteur]
Finite-time control and estimation for distributed systems [VALSE]
Aix Marseille Université [AMU]
Laboratoire d'Informatique et des Systèmes (LIS) (Marseille, Toulon) [LIS]
Contrôle et optimisation des systèmes et énergie [COSE]
Efimov, Denis [Auteur]

Finite-time control and estimation for distributed systems [VALSE]
Titre de la revue :
IEEE Control Systems Letters
Éditeur :
IEEE
Date de publication :
2024
Mot(s)-clé(s) en anglais :
Double integrator
Matched and unmatched perturbations
Hyperexponential convergence
Differentiator
Matched and unmatched perturbations
Hyperexponential convergence
Differentiator
Discipline(s) HAL :
Informatique [cs]/Automatique
Résumé en anglais : [en]
In this letter, we propose linear time-varying state feedback controllers for a double integrator system subject to bounded disturbances. Under the proposed controls, the first state of the double integrator converges to ...
Lire la suite >In this letter, we propose linear time-varying state feedback controllers for a double integrator system subject to bounded disturbances. Under the proposed controls, the first state of the double integrator converges to zero at a hyperexponential rate (faster than any exponential decay) uniformly with respect to the disturbances. Meanwhile, the second state stays bounded or approaches the negative of an unmatched differentiable perturbation. These results are applied to design a novel differentiator.Lire moins >
Lire la suite >In this letter, we propose linear time-varying state feedback controllers for a double integrator system subject to bounded disturbances. Under the proposed controls, the first state of the double integrator converges to zero at a hyperexponential rate (faster than any exponential decay) uniformly with respect to the disturbances. Meanwhile, the second state stays bounded or approaches the negative of an unmatched differentiable perturbation. These results are applied to design a novel differentiator.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- _24-1125_vf.pdf
- Accès libre
- Accéder au document