On the inviscid limit of the 2D Euler ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
On the inviscid limit of the 2D Euler equations with vorticity along the $(LMO^\alpha)_\alpha$ scale
Auteur(s) :
Bernicot, Frederic [Auteur]
Laboratoire de Mathématiques Jean Leray [LMJL]
Elgindi, Tarek M. [Auteur]
Courant Institute of Mathematical Sciences [New York] [CIMS]
Keraani, Sahbi [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire de Mathématiques Jean Leray [LMJL]
Elgindi, Tarek M. [Auteur]
Courant Institute of Mathematical Sciences [New York] [CIMS]
Keraani, Sahbi [Auteur]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Annales de l'Institut Henri Poincaré C, Analyse non linéaire
Pagination :
597-619
Éditeur :
EMS
Date de publication :
2016
ISSN :
0294-1449
Mot(s)-clé(s) :
BMO-type space
Inviscid limit
Global well-posedness
2D incompressible Euler equations
Inviscid limit
Global well-posedness
2D incompressible Euler equations
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse classique [math.CA]
Mathématiques [math]/Analyse classique [math.CA]
Résumé en anglais : [en]
In a recent paper [5], the global well-posedness of the two-dimensional Euler equation with vorticity in \mbox{$L^1\cap LBMO$} was proved, where $ LBMO$ is a Banach space which is strictly imbricated between \mbox{$L^\infty$} ...
Lire la suite >In a recent paper [5], the global well-posedness of the two-dimensional Euler equation with vorticity in \mbox{$L^1\cap LBMO$} was proved, where $ LBMO$ is a Banach space which is strictly imbricated between \mbox{$L^\infty$} and $BMO$. In the present paper we prove a global result of inviscid limit of the Navier-stokes system with data in this space and other spaces with the same BMO flavor. Some results of local uniform estimates on solutions of the Navier-Stokes equations, independent of the viscosity, are also obtained.Lire moins >
Lire la suite >In a recent paper [5], the global well-posedness of the two-dimensional Euler equation with vorticity in \mbox{$L^1\cap LBMO$} was proved, where $ LBMO$ is a Banach space which is strictly imbricated between \mbox{$L^\infty$} and $BMO$. In the present paper we prove a global result of inviscid limit of the Navier-stokes system with data in this space and other spaces with the same BMO flavor. Some results of local uniform estimates on solutions of the Navier-Stokes equations, independent of the viscosity, are also obtained.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Non spécifiée
Vulgarisation :
Non
Projet ANR :
Commentaire :
28 pages
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Bernicot-Elgindi-Keraani.pdf
- Accès libre
- Accéder au document
- 1401.1382
- Accès libre
- Accéder au document