Grothendieck–Neeman duality and the ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Grothendieck–Neeman duality and the Wirthmüller isomorphism
Auteur(s) :
Balmer, Paul [Auteur]
Department of Mathematics [UCLA]
Dell’Ambrogio, Ivo [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
Sanders, Beren [Auteur]
Department of Mathematics [UCLA]
Dell’Ambrogio, Ivo [Auteur]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Université de Lille
Sanders, Beren [Auteur]
Titre de la revue :
Compositio Mathematica
Pagination :
1740-1776
Éditeur :
Foundation Compositio Mathematica
Date de publication :
2016-05-23
ISSN :
0010-437X
Discipline(s) HAL :
Mathématiques [math]/Catégories et ensembles [math.CT]
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Topologie algébrique [math.AT]
Mathématiques [math]/K-théorie et homologie [math.KT]
Mathématiques [math]/Théorie des représentations [math.RT]
Mathématiques [math]/Géométrie algébrique [math.AG]
Mathématiques [math]/Topologie algébrique [math.AT]
Mathématiques [math]/K-théorie et homologie [math.KT]
Mathématiques [math]/Théorie des représentations [math.RT]
Résumé en anglais : [en]
We clarify the relationship between Grothendieck duality à la Neeman and the Wirthmüller isomorphism à la Fausk–Hu–May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly ...
Lire la suite >We clarify the relationship between Grothendieck duality à la Neeman and the Wirthmüller isomorphism à la Fausk–Hu–May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly generated tensor-triangulated categories, which leads to a surprising trichotomy: there exist either exactly three adjoints, exactly five, or infinitely many. We highlight the importance of so-called relative dualizing objects and explain how they give rise to dualities on canonical subcategories. This yields a duality theory rich enough to capture the main features of Grothendieck duality in algebraic geometry, of generalized Pontryagin–Matlis duality à la Dwyer–Greenless–Iyengar in the theory of ring spectra, and of Brown–Comenetz duality à la Neeman in stable homotopy theory.Lire moins >
Lire la suite >We clarify the relationship between Grothendieck duality à la Neeman and the Wirthmüller isomorphism à la Fausk–Hu–May. We exhibit an interesting pattern of symmetry in the existence of adjoint functors between compactly generated tensor-triangulated categories, which leads to a surprising trichotomy: there exist either exactly three adjoints, exactly five, or infinitely many. We highlight the importance of so-called relative dualizing objects and explain how they give rise to dualities on canonical subcategories. This yields a duality theory rich enough to capture the main features of Grothendieck duality in algebraic geometry, of generalized Pontryagin–Matlis duality à la Dwyer–Greenless–Iyengar in the theory of ring spectra, and of Brown–Comenetz duality à la Neeman in stable homotopy theory.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Date de dépôt :
2025-01-24T14:12:46Z
Fichiers
- 1501.01999
- Accès libre
- Accéder au document