From geodesic extrapolation to a variational ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
From geodesic extrapolation to a variational BDF2 scheme for Wasserstein gradient flows
Auteur(s) :
Gallouët, Thomas [Auteur]
Méthodes particulaires utilisant Monge-Ampère [PARMA]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Natale, Andrea [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Todeschi, Gabriele [Auteur]
Institut des Sciences de la Terre [ISTerre]
Méthodes particulaires utilisant Monge-Ampère [PARMA]
Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales [MOKAPLAN]
Natale, Andrea [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Todeschi, Gabriele [Auteur]
Institut des Sciences de la Terre [ISTerre]
Titre de la revue :
Mathematics of Computation
Pagination :
2769-2810
Éditeur :
American Mathematical Society
Date de publication :
2024
ISSN :
0025-5718
Mot(s)-clé(s) en anglais :
Optimal transport
Wasserstein extrapolation
Wasserstein gradient flows
BDF2
Wasserstein extrapolation
Wasserstein gradient flows
BDF2
Discipline(s) HAL :
Mathématiques [math]/Equations aux dérivées partielles [math.AP]
Mathématiques [math]/Analyse numérique [math.NA]
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
We introduce a time discretization for Wasserstein gradient flows based on the classical Backward Differentiation Formula of order two. The main building block of the scheme is the notion of geodesic extrapolation in the ...
Lire la suite >We introduce a time discretization for Wasserstein gradient flows based on the classical Backward Differentiation Formula of order two. The main building block of the scheme is the notion of geodesic extrapolation in the Wasserstein space, which in general is not uniquely defined. We propose several possible definitions for such an operation, and we prove convergence of the resulting scheme to the limit PDE, in the case of the Fokker-Planck equation. For a specific choice of extrapolation we also prove a more general result, that is convergence towards EVI flows. Finally, we propose a variational finite volume discretization of the scheme which numerically achieves second order accuracy in both space and time.Lire moins >
Lire la suite >We introduce a time discretization for Wasserstein gradient flows based on the classical Backward Differentiation Formula of order two. The main building block of the scheme is the notion of geodesic extrapolation in the Wasserstein space, which in general is not uniquely defined. We propose several possible definitions for such an operation, and we prove convergence of the resulting scheme to the limit PDE, in the case of the Fokker-Planck equation. For a specific choice of extrapolation we also prove a more general result, that is convergence towards EVI flows. Finally, we propose a variational finite volume discretization of the scheme which numerically achieves second order accuracy in both space and time.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- WassersteinExtrapolationBDF2.pdf
- Accès libre
- Accéder au document
- 2209.14622
- Accès libre
- Accéder au document