Segmentation of the mean of heteroscedastic ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
Segmentation of the mean of heteroscedastic data via cross-validation
Auteur(s) :
Arlot, Sylvain [Auteur]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
Celisse, Alain [Auteur correspondant]
Laboratoire Paul Painlevé - UMR 8524 [LPP]
Laboratoire d'informatique de l'école normale supérieure [LIENS]
Celisse, Alain [Auteur correspondant]

Laboratoire Paul Painlevé - UMR 8524 [LPP]
Titre de la revue :
Statistics and Computing
Pagination :
electronic
Éditeur :
Springer Verlag (Germany)
Date de publication :
2010-07-08
ISSN :
0960-3174
Mot(s)-clé(s) en anglais :
leave-p-out
CGH profile.
heteroscedastic data
CGH profile
Change-point detection
segmentation
resampling
cross-validation
CGH profile.
heteroscedastic data
CGH profile
Change-point detection
segmentation
resampling
cross-validation
Discipline(s) HAL :
Statistiques [stat]/Méthodologie [stat.ME]
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
Mathématiques [math]/Statistiques [math.ST]
Statistiques [stat]/Théorie [stat.TH]
Résumé en anglais : [en]
This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is ...
Lire la suite >This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is proposed, showing that cross-validation methods can be successful in the heteroscedastic framework, whereas most existing procedures are not robust to heteroscedasticity. The robustness to heteroscedasticity of the proposed procedures is supported by an extensive simulation study, together with recent theoretical results. An application to Comparative Genomic Hybridization (CGH) data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.Lire moins >
Lire la suite >This paper tackles the problem of detecting abrupt changes in the mean of a heteroscedastic signal by model selection, without knowledge on the variations of the noise. A new family of change-point detection procedures is proposed, showing that cross-validation methods can be successful in the heteroscedastic framework, whereas most existing procedures are not robust to heteroscedasticity. The robustness to heteroscedasticity of the proposed procedures is supported by an extensive simulation study, together with recent theoretical results. An application to Comparative Genomic Hybridization (CGH) data is provided, showing that robustness to heteroscedasticity can indeed be required for their analysis.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Commentaire :
Published in Statistics and Computing. DOI: 10.1007/s11222-010-9196-x
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- chpt.pdf
- Accès libre
- Accéder au document
- chpt_supp.pdf
- Accès libre
- Accéder au document
- 0902.3977
- Accès libre
- Accéder au document