Stability and convergence of an hybrid ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model
Auteur(s) :
Calgaro, Caterina [Auteur]
Reliable numerical approximations of dissipative systems [RAPSODI]
Ezzoug, Meriem [Auteur]
Département de Mathématiques [Monastir]
Zahrouni, Ezzeddine [Auteur]
Département de Mathématiques [Monastir]
Université de Carthage (Tunisie) [UCAR]

Reliable numerical approximations of dissipative systems [RAPSODI]
Ezzoug, Meriem [Auteur]
Département de Mathématiques [Monastir]
Zahrouni, Ezzeddine [Auteur]
Département de Mathématiques [Monastir]
Université de Carthage (Tunisie) [UCAR]
Titre de la revue :
Communications on Pure and Applied Analysis
Pagination :
429-448
Éditeur :
AIMS American Institute of Mathematical Sciences
Date de publication :
2018-03
ISSN :
1534-0392
Mot(s)-clé(s) en anglais :
convergence
stability
Finite Volume method
Finite Element method
Kazhikhov-Smagulov model
stability
Finite Volume method
Finite Element method
Kazhikhov-Smagulov model
Discipline(s) HAL :
Mathématiques [math]/Analyse numérique [math.NA]
Résumé en anglais : [en]
In this paper, we construct a fully discrete numerical scheme for approximating a two-dimensional multiphasic incompressible fluid model, also called the Kazhikhov-Smagulov model. We use a first-order time discretization ...
Lire la suite >In this paper, we construct a fully discrete numerical scheme for approximating a two-dimensional multiphasic incompressible fluid model, also called the Kazhikhov-Smagulov model. We use a first-order time discretization and a splitting in time to allow us the construction of an hybrid scheme which combines a Finite Volume and a Finite Element method. Consequently, at each time step, one only needs to solve two decoupled problems, the first one for the density and the second one for the velocity and pressure. We will prove the stability of the scheme and the convergence towards the global in time weak solution of the model.Lire moins >
Lire la suite >In this paper, we construct a fully discrete numerical scheme for approximating a two-dimensional multiphasic incompressible fluid model, also called the Kazhikhov-Smagulov model. We use a first-order time discretization and a splitting in time to allow us the construction of an hybrid scheme which combines a Finite Volume and a Finite Element method. Consequently, at each time step, one only needs to solve two decoupled problems, the first one for the density and the second one for the velocity and pressure. We will prove the stability of the scheme and the convergence towards the global in time weak solution of the model.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- CEZ_CPAA_HAL_12sept.pdf
- Accès libre
- Accéder au document