Catalytic abatement of NO and N2O from ...
Document type :
Article dans une revue scientifique
Permalink :
Title :
Catalytic abatement of NO and N2O from nitric acid plants: A novel approach using noble metal-modified perovskites
Author(s) :
Wu, Y. [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dujardin, Christophe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Lancelot, Christine [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dacquin, Jean-Philippe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Parvulescu, Vasile I. [Auteur]
University of Bucharest [UniBuc]
Cabié, M. [Auteur]
Aix Marseille Université [AMU]
Centre Interdisciplinaire de Nanoscience de Marseille [CINaM]
Henry, C.R. [Auteur]
Centre Interdisciplinaire de Nanoscience de Marseille [CINaM]
Neisius, T. [Auteur]
Aix Marseille Université [AMU]
Granger, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dujardin, Christophe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Lancelot, Christine [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dacquin, Jean-Philippe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Parvulescu, Vasile I. [Auteur]
University of Bucharest [UniBuc]
Cabié, M. [Auteur]
Aix Marseille Université [AMU]
Centre Interdisciplinaire de Nanoscience de Marseille [CINaM]
Henry, C.R. [Auteur]
Centre Interdisciplinaire de Nanoscience de Marseille [CINaM]
Neisius, T. [Auteur]
Aix Marseille Université [AMU]
Granger, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Journal title :
Journal of Catalysis
Volume number :
328
Pages :
236-247
Publisher :
Elsevier
Publication date :
2015
ISSN :
0021-9517
English keyword(s) :
Catalytic N2O decomposition
NO/H2 reaction
Nitric acid nitric plant
Precious metals
Perovskite
NO/H2 reaction
Nitric acid nitric plant
Precious metals
Perovskite
HAL domain(s) :
Chimie/Catalyse
English abstract : [en]
A combined study was achieved to remove sequentially trace amounts of N2O and NO from nitric acid plants. Catalytic systems involving perovskite-type materials have been developed in which precious metals were incorporated ...
Show more >A combined study was achieved to remove sequentially trace amounts of N2O and NO from nitric acid plants. Catalytic systems involving perovskite-type materials have been developed in which precious metals were incorporated in order to compensate deactivation processes for high-temperature N2O decomposition and to enhance the usual low-temperature activity in NO conversion. The high-temperature catalytic decomposition of N2O was studied in the temperature range 500–700 °C in realistic conditions with 1000 ppm N2O, 5000 ppm NO, 6 vol.% O2, and 15% H2O. Starting from LaC0.95Pd0.05O3 prepared by a sol gel route, it was found that appropriate sequential oxidative/reductive pre-activation thermal treatments can lead to the diffusion and the segregation of PdOx clusters in strong interaction with the perovskite structure. A sharp increase in intrinsic rates and an apparent compensation effect emphasize the importance of the PdOx-support interface where Pd at the vicinity of anionic oxygen species from the perovskite can facilitate the formation of anionic vacancies potentially active for N2O dissociation. Regarding the NO/H2 reaction, Pt supported on LaFeO3 shows remarkable activities below 100 °C depending on the temperature of the pre-reductive thermal treatment and the aging process at 500 °C in reaction conditions. Activity in NO reduction at 80 °C has been explained from the involvement of the Pt–LaFeO3 interface supported by HRTEM observations relative to the growth of epitaxially orientated Pt particles and the correlation observed between calculated rates based on the length of the interfacial perimeter increasing with the particle size diameter. Such a trend persists at higher temperature (T = 255 °C) when dPt > 7.5 nm. On the other hand, for Pt particles with dPt < 7.5 nm, the NO/H2 reaction becomes more structure sensitive.Show less >
Show more >A combined study was achieved to remove sequentially trace amounts of N2O and NO from nitric acid plants. Catalytic systems involving perovskite-type materials have been developed in which precious metals were incorporated in order to compensate deactivation processes for high-temperature N2O decomposition and to enhance the usual low-temperature activity in NO conversion. The high-temperature catalytic decomposition of N2O was studied in the temperature range 500–700 °C in realistic conditions with 1000 ppm N2O, 5000 ppm NO, 6 vol.% O2, and 15% H2O. Starting from LaC0.95Pd0.05O3 prepared by a sol gel route, it was found that appropriate sequential oxidative/reductive pre-activation thermal treatments can lead to the diffusion and the segregation of PdOx clusters in strong interaction with the perovskite structure. A sharp increase in intrinsic rates and an apparent compensation effect emphasize the importance of the PdOx-support interface where Pd at the vicinity of anionic oxygen species from the perovskite can facilitate the formation of anionic vacancies potentially active for N2O dissociation. Regarding the NO/H2 reaction, Pt supported on LaFeO3 shows remarkable activities below 100 °C depending on the temperature of the pre-reductive thermal treatment and the aging process at 500 °C in reaction conditions. Activity in NO reduction at 80 °C has been explained from the involvement of the Pt–LaFeO3 interface supported by HRTEM observations relative to the growth of epitaxially orientated Pt particles and the correlation observed between calculated rates based on the length of the interfacial perimeter increasing with the particle size diameter. Such a trend persists at higher temperature (T = 255 °C) when dPt > 7.5 nm. On the other hand, for Pt particles with dPt < 7.5 nm, the NO/H2 reaction becomes more structure sensitive.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Other project(s) or funding source(s) :
IRENI
ADEME
METSA network
Communauté Urbaine de Dunkerque
Région Nord Pas-de-Calais
Ministère de l’Enseignement Supérieur et de la Recherche
CNRS
FEDER
ADEME
METSA network
Communauté Urbaine de Dunkerque
Région Nord Pas-de-Calais
Ministère de l’Enseignement Supérieur et de la Recherche
CNRS
FEDER
Administrative institution(s) :
ENSCL
CNRS
Centrale Lille
Univ. Artois
Université de Lille
CNRS
Centrale Lille
Univ. Artois
Université de Lille
Collections :
Research team(s) :
Catalyse pour l’énergie (CATEN)
Matériaux pour la catalyse (MATCAT)
Remédiation et matériaux catalytiques (REMCAT)
Matériaux pour la catalyse (MATCAT)
Remédiation et matériaux catalytiques (REMCAT)
Submission date :
2019-09-25T14:04:36Z
2024-01-30T14:01:15Z
2024-01-30T14:01:15Z
Files
- Preprint.pdf
- Version soumise (preprint)
- Open access
- Access the document