Catalytic abatement of NO and N2O from ...
Type de document :
Article dans une revue scientifique
URL permanente :
Titre :
Catalytic abatement of NO and N2O from nitric acid plants: A novel approach using noble metal-modified perovskites
Auteur(s) :
Wu, Y. [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dujardin, Christophe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Lancelot, Christine [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dacquin, Jean-Philippe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Parvulescu, Vasile I. [Auteur]
University of Bucharest [UniBuc]
Cabié, M. [Auteur]
Aix Marseille Université [AMU]
Centre Interdisciplinaire de Nanoscience de Marseille [CINaM]
Henry, C.R. [Auteur]
Centre Interdisciplinaire de Nanoscience de Marseille [CINaM]
Neisius, T. [Auteur]
Aix Marseille Université [AMU]
Granger, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dujardin, Christophe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Lancelot, Christine [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Dacquin, Jean-Philippe [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Parvulescu, Vasile I. [Auteur]
University of Bucharest [UniBuc]
Cabié, M. [Auteur]
Aix Marseille Université [AMU]
Centre Interdisciplinaire de Nanoscience de Marseille [CINaM]
Henry, C.R. [Auteur]
Centre Interdisciplinaire de Nanoscience de Marseille [CINaM]
Neisius, T. [Auteur]
Aix Marseille Université [AMU]
Granger, Pascal [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Titre de la revue :
Journal of Catalysis
Numéro :
328
Pagination :
236-247
Éditeur :
Elsevier
Date de publication :
2015
ISSN :
0021-9517
Mot(s)-clé(s) en anglais :
Catalytic N2O decomposition
NO/H2 reaction
Nitric acid nitric plant
Precious metals
Perovskite
NO/H2 reaction
Nitric acid nitric plant
Precious metals
Perovskite
Discipline(s) HAL :
Chimie/Catalyse
Résumé en anglais : [en]
A combined study was achieved to remove sequentially trace amounts of N2O and NO from nitric acid plants. Catalytic systems involving perovskite-type materials have been developed in which precious metals were incorporated ...
Lire la suite >A combined study was achieved to remove sequentially trace amounts of N2O and NO from nitric acid plants. Catalytic systems involving perovskite-type materials have been developed in which precious metals were incorporated in order to compensate deactivation processes for high-temperature N2O decomposition and to enhance the usual low-temperature activity in NO conversion. The high-temperature catalytic decomposition of N2O was studied in the temperature range 500–700 °C in realistic conditions with 1000 ppm N2O, 5000 ppm NO, 6 vol.% O2, and 15% H2O. Starting from LaC0.95Pd0.05O3 prepared by a sol gel route, it was found that appropriate sequential oxidative/reductive pre-activation thermal treatments can lead to the diffusion and the segregation of PdOx clusters in strong interaction with the perovskite structure. A sharp increase in intrinsic rates and an apparent compensation effect emphasize the importance of the PdOx-support interface where Pd at the vicinity of anionic oxygen species from the perovskite can facilitate the formation of anionic vacancies potentially active for N2O dissociation. Regarding the NO/H2 reaction, Pt supported on LaFeO3 shows remarkable activities below 100 °C depending on the temperature of the pre-reductive thermal treatment and the aging process at 500 °C in reaction conditions. Activity in NO reduction at 80 °C has been explained from the involvement of the Pt–LaFeO3 interface supported by HRTEM observations relative to the growth of epitaxially orientated Pt particles and the correlation observed between calculated rates based on the length of the interfacial perimeter increasing with the particle size diameter. Such a trend persists at higher temperature (T = 255 °C) when dPt > 7.5 nm. On the other hand, for Pt particles with dPt < 7.5 nm, the NO/H2 reaction becomes more structure sensitive.Lire moins >
Lire la suite >A combined study was achieved to remove sequentially trace amounts of N2O and NO from nitric acid plants. Catalytic systems involving perovskite-type materials have been developed in which precious metals were incorporated in order to compensate deactivation processes for high-temperature N2O decomposition and to enhance the usual low-temperature activity in NO conversion. The high-temperature catalytic decomposition of N2O was studied in the temperature range 500–700 °C in realistic conditions with 1000 ppm N2O, 5000 ppm NO, 6 vol.% O2, and 15% H2O. Starting from LaC0.95Pd0.05O3 prepared by a sol gel route, it was found that appropriate sequential oxidative/reductive pre-activation thermal treatments can lead to the diffusion and the segregation of PdOx clusters in strong interaction with the perovskite structure. A sharp increase in intrinsic rates and an apparent compensation effect emphasize the importance of the PdOx-support interface where Pd at the vicinity of anionic oxygen species from the perovskite can facilitate the formation of anionic vacancies potentially active for N2O dissociation. Regarding the NO/H2 reaction, Pt supported on LaFeO3 shows remarkable activities below 100 °C depending on the temperature of the pre-reductive thermal treatment and the aging process at 500 °C in reaction conditions. Activity in NO reduction at 80 °C has been explained from the involvement of the Pt–LaFeO3 interface supported by HRTEM observations relative to the growth of epitaxially orientated Pt particles and the correlation observed between calculated rates based on the length of the interfacial perimeter increasing with the particle size diameter. Such a trend persists at higher temperature (T = 255 °C) when dPt > 7.5 nm. On the other hand, for Pt particles with dPt < 7.5 nm, the NO/H2 reaction becomes more structure sensitive.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Autre(s) projet(s) ou source(s) de financement :
IRENI
ADEME
METSA network
Communauté Urbaine de Dunkerque
Région Nord Pas-de-Calais
Ministère de l’Enseignement Supérieur et de la Recherche
CNRS
FEDER
ADEME
METSA network
Communauté Urbaine de Dunkerque
Région Nord Pas-de-Calais
Ministère de l’Enseignement Supérieur et de la Recherche
CNRS
FEDER
Établissement(s) :
ENSCL
CNRS
Centrale Lille
Univ. Artois
Université de Lille
CNRS
Centrale Lille
Univ. Artois
Université de Lille
Collections :
Équipe(s) de recherche :
Catalyse pour l’énergie (CATEN)
Matériaux pour la catalyse (MATCAT)
Remédiation et matériaux catalytiques (REMCAT)
Matériaux pour la catalyse (MATCAT)
Remédiation et matériaux catalytiques (REMCAT)
Date de dépôt :
2019-09-25T14:04:36Z
2024-01-30T14:01:15Z
2024-01-30T14:01:15Z
Fichiers
- Preprint.pdf
- Version soumise (preprint)
- Accès libre
- Accéder au document