Evidence of the Formation of Crystalline ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Evidence of the Formation of Crystalline Aluminosilicate Phases in Glass-Ceramics by Calcination of Alkali-Brick Aggregates, Enabling Cs+, Rb+, Co2+, and Sr2+ Encapsulation
Auteur(s) :
Boughriet, Abdel [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Doyemet, Gildas-Gaël-Gervil [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Poumaye, Nicole [Auteur]
Université de Bangui
Alaimo, Veronique [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Ventalon, sandra [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Bout Roumazeilles, Viviane [Auteur]
Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Wartel, Michel [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Doyemet, Gildas-Gaël-Gervil [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Poumaye, Nicole [Auteur]
Université de Bangui
Alaimo, Veronique [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Ventalon, sandra [Auteur]

Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Bout Roumazeilles, Viviane [Auteur]

Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 [LOG]
Wartel, Michel [Auteur]

Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Titre de la revue :
Applied Science-Basel
Nom court de la revue :
Appl. Sci.-Basel
Numéro :
15
Pagination :
1379
Éditeur :
MDPI
Date de publication :
2025-03-01
ISSN :
2076-3417
Mot(s)-clé(s) en anglais :
composite
zeolites
illite
sand
calcination
glass-ceramic
radio-nuclides
immobilization
corrosion resistance
zeolites
illite
sand
calcination
glass-ceramic
radio-nuclides
immobilization
corrosion resistance
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
The feasibility of using brick aggregates for the preparation of aluminosilicate “glass-ceramic” forms as a novel cementitious composite capable of immobilizing radioactive elements was examined. Raw brick was initially ...
Lire la suite >The feasibility of using brick aggregates for the preparation of aluminosilicate “glass-ceramic” forms as a novel cementitious composite capable of immobilizing radioactive elements was examined. Raw brick was initially activated with sodium hydroxide. X-ray diffraction analysis (XRD) confirmed zeolites (Na-A and Na-P), illite, and sand (quartz) as major phases. Thermal analysis showed several successive events: dehydration/dehydroxylation of illite, followed by degradation of illite and zeolites. Upon heating to 1000 °C, scanning electron microscopy and XRD provided evidence of the presence of novel crystalline aluminosilicate forms (analcime and leucite in the form of solid solutions). Then, upon heating to 1150 °C, the thermal process led to the additional formation of mullite and an amorphous silica-rich phase. The latter resulted from silica melting taking place, owing to the involvement of low-melting-point components on sand grains. Alkali-brick particles were then doped with Cs+, Rb+, Ca2+, and Sr2+ ions (individually) and subsequently heated at different temperatures. The corrosion resistance of the heated materials was examined in a hydrochloride acid solution. The aim was to highlight (i) the enhanced cationic-immobilization capacity of crystalline aluminosilicate phases embedded inside amorphous silica, and (ii) the role of sand in the creation of brick-based glass ceramicsLire moins >
Lire la suite >The feasibility of using brick aggregates for the preparation of aluminosilicate “glass-ceramic” forms as a novel cementitious composite capable of immobilizing radioactive elements was examined. Raw brick was initially activated with sodium hydroxide. X-ray diffraction analysis (XRD) confirmed zeolites (Na-A and Na-P), illite, and sand (quartz) as major phases. Thermal analysis showed several successive events: dehydration/dehydroxylation of illite, followed by degradation of illite and zeolites. Upon heating to 1000 °C, scanning electron microscopy and XRD provided evidence of the presence of novel crystalline aluminosilicate forms (analcime and leucite in the form of solid solutions). Then, upon heating to 1150 °C, the thermal process led to the additional formation of mullite and an amorphous silica-rich phase. The latter resulted from silica melting taking place, owing to the involvement of low-melting-point components on sand grains. Alkali-brick particles were then doped with Cs+, Rb+, Ca2+, and Sr2+ ions (individually) and subsequently heated at different temperatures. The corrosion resistance of the heated materials was examined in a hydrochloride acid solution. The aim was to highlight (i) the enhanced cationic-immobilization capacity of crystalline aluminosilicate phases embedded inside amorphous silica, and (ii) the role of sand in the creation of brick-based glass ceramicsLire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
CNRS
Collections :
Date de dépôt :
2025-03-05T22:01:41Z
2025-03-19T10:58:03Z
2025-03-19T10:58:03Z
Fichiers
- applsci-15-01379-v2.pdf
- Non spécifié
- Accès libre
- Accéder au document