Optimization of denoising approaches in ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Optimization of denoising approaches in the context of ultra-fast LIBS imaging
Auteur(s) :
Guerrini, Ruggero [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Alvarez-Llamas, C. [Auteur]
Institut Lumière Matière [Villeurbanne] [ILM]
Sancey, L. [Auteur]
Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) [IAB]
Motto-Ros, V. [Auteur]
Institut Lumière Matière [Villeurbanne] [ILM]
Duponchel, Ludovic [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Alvarez-Llamas, C. [Auteur]
Institut Lumière Matière [Villeurbanne] [ILM]
Sancey, L. [Auteur]
Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) [IAB]
Motto-Ros, V. [Auteur]
Institut Lumière Matière [Villeurbanne] [ILM]
Duponchel, Ludovic [Auteur]

Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement (LASIRE) - UMR 8516
Titre de la revue :
Spectroc. Acta Pt. B-Atom. Spectr.
Nom court de la revue :
Spectroc. Acta Pt. B-Atom. Spectr.
Numéro :
227
Pagination :
-
Date de publication :
2025-03-29
ISSN :
0584-8547
Mot(s)-clé(s) en anglais :
LIBS imaging
Denosing methods
Elemental analysis
PCA
kHz LIBS
Denosing methods
Elemental analysis
PCA
kHz LIBS
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
Laser-Induced Breakdown Spectroscopy (LIBS) has emerged as a powerful analytical tool capable of providing multi-elemental information from a single laser pulse with minimal sample preparation. This technique generates a ...
Lire la suite >Laser-Induced Breakdown Spectroscopy (LIBS) has emerged as a powerful analytical tool capable of providing multi-elemental information from a single laser pulse with minimal sample preparation. This technique generates a laser-induced, transient plasma on the sample surface, whose spectral emission is analyzed to determine its elemental composition. μLIBS-Imaging, a variant offering spatially resolved elemental analysis, holds promise for applications in diverse fields such as industry, geology, forensics, and biomedicine. Our drive to go ever faster and analyze increasingly larger areas of interest in samples now compels us to use kHz lasers for this elemental imaging. Despite its potential, implementing such lasers in μLIBS-imaging would face diverse challenges mainly related to weak plasma emission and signal-to-noise ratio (SNR) degradation, particularly when applied to delicate biological samples. This paper investigates methods to enhance SNR in fast μLIBS imaging, particularly for biomedical applications. We focus on denoising techniques suitable for high-frequency laser applications, comparing methods like Savitzky-Golay smoothing, Fast Fourier Transform, wavelet-based filtering, Whittaker Filtering, and Principal Component Analysis (PCA). Our strategy optimizes denoising parameters for specific elemental emission peaks, enhancing SNR for individual elements of interest. The results demonstrate significant improvements in data quality, paving the way for more accurate and efficient elemental imaging in complex biomedical specimens.Lire moins >
Lire la suite >Laser-Induced Breakdown Spectroscopy (LIBS) has emerged as a powerful analytical tool capable of providing multi-elemental information from a single laser pulse with minimal sample preparation. This technique generates a laser-induced, transient plasma on the sample surface, whose spectral emission is analyzed to determine its elemental composition. μLIBS-Imaging, a variant offering spatially resolved elemental analysis, holds promise for applications in diverse fields such as industry, geology, forensics, and biomedicine. Our drive to go ever faster and analyze increasingly larger areas of interest in samples now compels us to use kHz lasers for this elemental imaging. Despite its potential, implementing such lasers in μLIBS-imaging would face diverse challenges mainly related to weak plasma emission and signal-to-noise ratio (SNR) degradation, particularly when applied to delicate biological samples. This paper investigates methods to enhance SNR in fast μLIBS imaging, particularly for biomedical applications. We focus on denoising techniques suitable for high-frequency laser applications, comparing methods like Savitzky-Golay smoothing, Fast Fourier Transform, wavelet-based filtering, Whittaker Filtering, and Principal Component Analysis (PCA). Our strategy optimizes denoising parameters for specific elemental emission peaks, enhancing SNR for individual elements of interest. The results demonstrate significant improvements in data quality, paving the way for more accurate and efficient elemental imaging in complex biomedical specimens.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
CNRS
Collections :
Date de dépôt :
2025-04-05T21:02:00Z
2025-04-16T08:06:11Z
2025-04-16T08:06:11Z