Realization and identification algorithm ...
Document type :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès avec actes
Title :
Realization and identification algorithm for stochastic LPV state-space models with exogenous inputs
Author(s) :
Mejari, Manas [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Petreczky, Mihaly [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Petreczky, Mihaly [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Conference title :
3rd IFAC Workshop on Linear Parameter-Varying Systems
City :
Eindhoven
Country :
Pays-Bas
Start date of the conference :
2019-11-04
Publication date :
2019
HAL domain(s) :
Mathématiques [math]/Optimisation et contrôle [math.OC]
Sciences de l'ingénieur [physics]/Automatique / Robotique
Sciences de l'ingénieur [physics]/Automatique / Robotique
English abstract : [en]
In this paper, we present a realization and an identification algorithm for stochastic Linear Parameter-Varying State-Space Affine (LPV-SSA) representations. The proposed realization algorithm combines the deterministic ...
Show more >In this paper, we present a realization and an identification algorithm for stochastic Linear Parameter-Varying State-Space Affine (LPV-SSA) representations. The proposed realization algorithm combines the deterministic LPV input output to LPV state-space realization scheme based on correlation analysis with a stochastic covariance realization algorithm. Based on this realization algorithm, a computationally efficient and statistically consistent identification algorithm is proposed to estimate the LPV model matrices, which are computed from the empirical covariance matrices of outputs, inputs and scheduling signal observations. The effectiveness of the proposed algorithm is shown via a numerical case study.Show less >
Show more >In this paper, we present a realization and an identification algorithm for stochastic Linear Parameter-Varying State-Space Affine (LPV-SSA) representations. The proposed realization algorithm combines the deterministic LPV input output to LPV state-space realization scheme based on correlation analysis with a stochastic covariance realization algorithm. Based on this realization algorithm, a computationally efficient and statistically consistent identification algorithm is proposed to estimate the LPV model matrices, which are computed from the empirical covariance matrices of outputs, inputs and scheduling signal observations. The effectiveness of the proposed algorithm is shown via a numerical case study.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
Source :
Files
- https://hal.archives-ouvertes.fr/hal-02398576/document
- Open access
- Access the document
- https://doi.org/10.1016/j.ifacol.2019.12.340
- Open access
- Access the document
- https://doi.org/10.1016/j.ifacol.2019.12.340
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-02398576/document
- Open access
- Access the document
- https://doi.org/10.1016/j.ifacol.2019.12.340
- Open access
- Access the document
- https://doi.org/10.1016/j.ifacol.2019.12.340
- Open access
- Access the document
- document
- Open access
- Access the document
- LPVS19_LPVS_V6_reduced_version.pdf
- Open access
- Access the document
- j.ifacol.2019.12.340
- Open access
- Access the document