A note on delay robustness for homogeneous ...
Type de document :
Article dans une revue scientifique: Article original
Titre :
A note on delay robustness for homogeneous systems with negative degree
Auteur(s) :
Zimenko, Konstantin [Auteur]
Department of Control Systems and Informatics
Efimov, Denis [Auteur]
Department of Control Systems and Informatics
Non-Asymptotic estimation for online systems [NON-A]
Polyakov, Andrey [Auteur]
Department of Control Systems and Informatics
Non-Asymptotic estimation for online systems [NON-A]
Perruquetti, Wilfrid [Auteur]
Non-Asymptotic estimation for online systems [NON-A]
Department of Control Systems and Informatics
Efimov, Denis [Auteur]

Department of Control Systems and Informatics
Non-Asymptotic estimation for online systems [NON-A]
Polyakov, Andrey [Auteur]

Department of Control Systems and Informatics
Non-Asymptotic estimation for online systems [NON-A]
Perruquetti, Wilfrid [Auteur]

Non-Asymptotic estimation for online systems [NON-A]
Titre de la revue :
Automatica
Pagination :
178-184
Éditeur :
Elsevier
Date de publication :
2017-05
ISSN :
0005-1098
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Automatique / Robotique
Résumé en anglais : [en]
Robustness with respect to delays is discussed for homogeneous systems with negative degree. It is shown that if homogeneous system with negative degree is globally asymptotically stable at the origin in the delay-free ...
Lire la suite >Robustness with respect to delays is discussed for homogeneous systems with negative degree. It is shown that if homogeneous system with negative degree is globally asymptotically stable at the origin in the delay-free case then the system is globally asymptotically stable with respect to a compact set containing the origin independently of delay. The possibility of applying the result for local analysis of stability for not necessary homogeneous systems is analyzed. The theoretical results are supported by numerical examples.Lire moins >
Lire la suite >Robustness with respect to delays is discussed for homogeneous systems with negative degree. It is shown that if homogeneous system with negative degree is globally asymptotically stable at the origin in the delay-free case then the system is globally asymptotically stable with respect to a compact set containing the origin independently of delay. The possibility of applying the result for local analysis of stability for not necessary homogeneous systems is analyzed. The theoretical results are supported by numerical examples.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01419131/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01419131/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01419131/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- _autosam.pdf
- Accès libre
- Accéder au document
- _autosam.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- _autosam.pdf
- Accès libre
- Accéder au document