Globally Stable Implicit Euler Time-Discretization ...
Document type :
Communication dans un congrès avec actes
DOI :
Title :
Globally Stable Implicit Euler Time-Discretization of a Nonlinear Single-Input Sliding-Mode Control System
Author(s) :
Brogliato, Bernard [Auteur]
Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems [BIPOP]
Polyakov, Andrey [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Non-Asymptotic estimation for online systems [NON-A]
Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems [BIPOP]
Polyakov, Andrey [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Non-Asymptotic estimation for online systems [NON-A]
Conference title :
54th Conference on Decision and Control 2015
City :
Osaka
Country :
Japon
Start date of the conference :
2015-12-15
Publisher :
IEEE
Publication date :
2016-12
English keyword(s) :
hyper-exponential convergence
sliding mode
Implicit Euler discretization
fixed-time stability
sliding mode
Implicit Euler discretization
fixed-time stability
HAL domain(s) :
Informatique [cs]/Automatique
English abstract : [en]
In this note we study the effect of an implicit Euler time-discretization method on the stability of the discretization of a globally fixed-time stable, scalar differential inclusion representing a simple nonlinear system ...
Show more >In this note we study the effect of an implicit Euler time-discretization method on the stability of the discretization of a globally fixed-time stable, scalar differential inclusion representing a simple nonlinear system with a set-valued signum controller. The controller nonlinearity is a cubic term and it is shown that the fully-implicit method preserves the global Lyapunov stability property of the continuous-time system, contrarily the explicit discretization which does not. It allows to obtain finite-time convergence to the origin when the plant is undisturbed, while the cubic term provides the hyper-exponential convergence rate.Show less >
Show more >In this note we study the effect of an implicit Euler time-discretization method on the stability of the discretization of a globally fixed-time stable, scalar differential inclusion representing a simple nonlinear system with a set-valued signum controller. The controller nonlinearity is a cubic term and it is shown that the fully-implicit method preserves the global Lyapunov stability property of the continuous-time system, contrarily the explicit discretization which does not. It allows to obtain finite-time convergence to the origin when the plant is undisturbed, while the cubic term provides the hyper-exponential convergence rate.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
ANR Project :
Collections :
Source :
Files
- https://hal.inria.fr/hal-01212601/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01212601/document
- Open access
- Access the document
- https://hal.inria.fr/hal-01212601/document
- Open access
- Access the document
- document
- Open access
- Access the document
- CDC15_1023_FI.pdf
- Open access
- Access the document
- document
- Open access
- Access the document
- CDC15_1023_FI.pdf
- Open access
- Access the document