Globally Stable Implicit Euler Time-Discretization ...
Type de document :
Communication dans un congrès avec actes
DOI :
Titre :
Globally Stable Implicit Euler Time-Discretization of a Nonlinear Single-Input Sliding-Mode Control System
Auteur(s) :
Brogliato, Bernard [Auteur]
Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems [BIPOP]
Polyakov, Andrey [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Non-Asymptotic estimation for online systems [NON-A]
Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems [BIPOP]
Polyakov, Andrey [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Non-Asymptotic estimation for online systems [NON-A]
Titre de la manifestation scientifique :
54th Conference on Decision and Control 2015
Ville :
Osaka
Pays :
Japon
Date de début de la manifestation scientifique :
2015-12-15
Éditeur :
IEEE
Date de publication :
2016-12
Mot(s)-clé(s) en anglais :
hyper-exponential convergence
sliding mode
Implicit Euler discretization
fixed-time stability
sliding mode
Implicit Euler discretization
fixed-time stability
Discipline(s) HAL :
Informatique [cs]/Automatique
Résumé en anglais : [en]
In this note we study the effect of an implicit Euler time-discretization method on the stability of the discretization of a globally fixed-time stable, scalar differential inclusion representing a simple nonlinear system ...
Lire la suite >In this note we study the effect of an implicit Euler time-discretization method on the stability of the discretization of a globally fixed-time stable, scalar differential inclusion representing a simple nonlinear system with a set-valued signum controller. The controller nonlinearity is a cubic term and it is shown that the fully-implicit method preserves the global Lyapunov stability property of the continuous-time system, contrarily the explicit discretization which does not. It allows to obtain finite-time convergence to the origin when the plant is undisturbed, while the cubic term provides the hyper-exponential convergence rate.Lire moins >
Lire la suite >In this note we study the effect of an implicit Euler time-discretization method on the stability of the discretization of a globally fixed-time stable, scalar differential inclusion representing a simple nonlinear system with a set-valued signum controller. The controller nonlinearity is a cubic term and it is shown that the fully-implicit method preserves the global Lyapunov stability property of the continuous-time system, contrarily the explicit discretization which does not. It allows to obtain finite-time convergence to the origin when the plant is undisturbed, while the cubic term provides the hyper-exponential convergence rate.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- https://hal.inria.fr/hal-01212601/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01212601/document
- Accès libre
- Accéder au document
- https://hal.inria.fr/hal-01212601/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- CDC15_1023_FI.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- CDC15_1023_FI.pdf
- Accès libre
- Accéder au document