Characterization of in-flame soot from ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Characterization of in-flame soot from balsa composite combustion during mass loss cone calorimeter tests
Author(s) :
Okyay, Gizem [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bellayer, Séverine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Solarski, Fabienne [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bellayer, Séverine [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Solarski, Fabienne [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Jimenez, Maude [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Bourbigot, Serge [Auteur]
Unité Matériaux et Transformations - UMR 8207 [UMET]
Journal title :
Polymer Degradation and Stability
Abbreviated title :
Polymer Degradation and Stability
Volume number :
154
Pages :
304-311
Publisher :
Elsevier BV
Publication date :
2018-08
ISSN :
0141-3910
HAL domain(s) :
Chimie
English abstract : [en]
Soot is one of the degradation products of material burning, having the fingerprints of the conditions in which it is formed. In this work, in-flame soot was probed from flaming combustion of balsa core and its sandwich ...
Show more >Soot is one of the degradation products of material burning, having the fingerprints of the conditions in which it is formed. In this work, in-flame soot was probed from flaming combustion of balsa core and its sandwich composite at different heat flux scenarios during mass loss cone calorimeter tests. Soot probing was performed by thermophoresis. Electron microscopy was performed to analyze the size of the particulate media at multiscale. The size of the aggregates and the primary particles were found to be inherent to scenarios, i.e. materials specifications and heat flux rates. Nanoscale structure of in-flame soot was consistent with the results of thermogravimetric analysis of emitted-deposited soot. This semi-quantitative study contributes to soot observations in fire scenarios and constitutes the first application of soot probing by thermophoresis in a bench-scale fire scenario simulated by cone calorimetry. Technique shall be used in future to support emitted soot and smoke data.Show less >
Show more >Soot is one of the degradation products of material burning, having the fingerprints of the conditions in which it is formed. In this work, in-flame soot was probed from flaming combustion of balsa core and its sandwich composite at different heat flux scenarios during mass loss cone calorimeter tests. Soot probing was performed by thermophoresis. Electron microscopy was performed to analyze the size of the particulate media at multiscale. The size of the aggregates and the primary particles were found to be inherent to scenarios, i.e. materials specifications and heat flux rates. Nanoscale structure of in-flame soot was consistent with the results of thermogravimetric analysis of emitted-deposited soot. This semi-quantitative study contributes to soot observations in fire scenarios and constitutes the first application of soot probing by thermophoresis in a bench-scale fire scenario simulated by cone calorimetry. Technique shall be used in future to support emitted soot and smoke data.Show less >
Language :
Anglais
Audience :
Internationale
European Project :
Administrative institution(s) :
Université de Lille
CNRS
INRA
ENSCL
CNRS
INRA
ENSCL
Collections :
Submission date :
2019-01-07T11:46:15Z
2019-03-21T15:00:51Z
2019-03-21T15:00:51Z
Files
- PDS 2018 - Characterization of in-flame soot from balsa composite combustion during mass loss cone calorimeter tests (accepted).pdf
- Version finale acceptée pour publication
- Open access
- Access the document