Probability estimation by an adapted genetic ...
Type de document :
Autre communication scientifique (congrès sans actes - poster - séminaire...): Communication dans un congrès sans actes
URL permanente :
Titre :
Probability estimation by an adapted genetic algorithm in web insurance
Auteur(s) :
Bedenel, Anne-Lise [Auteur]
Jourdan, Laetitia [Auteur]
Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Biernacki, Christophe [Auteur]
Jourdan, Laetitia [Auteur]

Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Biernacki, Christophe [Auteur]

Titre de la manifestation scientifique :
LION 12 - Learning and Intelligent Optimization Conference
Ville :
Kalamata
Pays :
Grèce
Date de début de la manifestation scientifique :
2018-06-10
Mot(s)-clé(s) :
WEB
BIC
Insurance
Genetic Algorithms
BIC
Insurance
Genetic Algorithms
Discipline(s) HAL :
Informatique [cs]/Recherche opérationnelle [cs.RO]
Résumé en anglais : [en]
In the insurance comparison domain, data constantly evolve, implying some difficulties to directly exploit them. Indeed, most of the classical learning methods require data descriptors equal to both learning and test ...
Lire la suite >In the insurance comparison domain, data constantly evolve, implying some difficulties to directly exploit them. Indeed, most of the classical learning methods require data descriptors equal to both learning and test samples. To answer business expectations, online forms where data come from are regularly modified. This constant modification of features and data descriptors makes statistical analysis more complex. A first work with statistical methods has been realized. This method relies on likelihood and models selection with the Bayesian information criterion. Unfortunately, this method is very expensive in computation time. Moreover, with this method, all models should be exhaustively compared, what is materially unattainable, so the search space is limited to a specific models family. In this work, we propose to use a genetic algorithm (GA) specifically adapted to overcome the statistical method defaults and shows its performances on real datasets provided by the company MeilleureAssur-ance.com.Lire moins >
Lire la suite >In the insurance comparison domain, data constantly evolve, implying some difficulties to directly exploit them. Indeed, most of the classical learning methods require data descriptors equal to both learning and test samples. To answer business expectations, online forms where data come from are regularly modified. This constant modification of features and data descriptors makes statistical analysis more complex. A first work with statistical methods has been realized. This method relies on likelihood and models selection with the Bayesian information criterion. Unfortunately, this method is very expensive in computation time. Moreover, with this method, all models should be exhaustively compared, what is materially unattainable, so the search space is limited to a specific models family. In this work, we propose to use a genetic algorithm (GA) specifically adapted to overcome the statistical method defaults and shows its performances on real datasets provided by the company MeilleureAssur-ance.com.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
CNRS
Centrale Lille
Université de Lille
Centrale Lille
Université de Lille
Date de dépôt :
2020-06-08T14:10:57Z
2020-06-09T09:27:27Z
2020-06-09T09:27:27Z
Fichiers
- documen
- Accès libre
- Accéder au document