Comment on “Gain-assisted superluminal ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Comment on “Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system”
Auteur(s) :
Macke, Bruno [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Segard, Bernard [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]

Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Segard, Bernard [Auteur]

Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Titre de la revue :
The European Physical Journal D : Atomic, molecular, optical and plasma physics
Pagination :
193
Éditeur :
EDP Sciences
Date de publication :
2016-09-22
ISSN :
1434-6060
Mot(s)-clé(s) en anglais :
Fast light
slow light
Kramers-Kronig relations
slow light
Kramers-Kronig relations
Discipline(s) HAL :
Physique [physics]/Physique [physics]/Optique [physics.optics]
Résumé en anglais : [en]
In a recent theoretical article [Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical ...
Lire la suite >In a recent theoretical article [Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical oscillator. In fact the superluminal propagation is only inferred from the existence of a minimum of transmission of the system at the probe frequency. This condition is not sufficient and we show that, in all the cases where superluminal propagation is claimed by Kazemi et al., the propagation is in reality subluminal. Moreover, we point out that the system under consideration is not minimum-phase-shift. The Kramers-Kronig relations then only fix a lower limit to the group delay and we show that these two quantities have sometimes opposite signs.Lire moins >
Lire la suite >In a recent theoretical article [Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical oscillator. In fact the superluminal propagation is only inferred from the existence of a minimum of transmission of the system at the probe frequency. This condition is not sufficient and we show that, in all the cases where superluminal propagation is claimed by Kazemi et al., the propagation is in reality subluminal. Moreover, we point out that the system under consideration is not minimum-phase-shift. The Kramers-Kronig relations then only fix a lower limit to the group delay and we show that these two quantities have sometimes opposite signs.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-01292239v2/document
- Accès libre
- Accéder au document
- http://arxiv.org/pdf/1603.07208
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01292239v2/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-01292239v2/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- CommentMahmoudi-2.pdf
- Accès libre
- Accéder au document
- 1603.07208
- Accès libre
- Accéder au document