Ferroelectric Gating of Narrow Band-Gap ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Ferroelectric Gating of Narrow Band-Gap Nanocrystal Arrays with Enhanced Light Matter Coupling
Auteur(s) :
Gréboval, Charlie [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Chu, Audrey [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Magalhaes, Debora [Auteur]
Universiteit Antwerpen = University of Antwerpen [Antwerpen]
Ramade, Julien [Auteur]
Universiteit Antwerpen = University of Antwerpen [Antwerpen]
Qu, Junling [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Rastogi, Prachi [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Khalili, Adrien [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Chee, Sang-Soo [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Aubin, Hervé [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Vincent, Grégory [Auteur]
DOTA, ONERA, Université Paris Saclay [Palaiseau]
Bals, Sara [Auteur]
Universiteit Antwerpen = University of Antwerpen [Antwerpen]
Delerue, Christophe [Auteur]
Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lhuillier, Emmanuel [Auteur]
Institut des Nanosciences de Paris [INSP]
Physico-chimie et dynamique des surfaces [INSP-E6]
Physico-chimie et dynamique des surfaces [INSP-E6]
Chu, Audrey [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Magalhaes, Debora [Auteur]
Universiteit Antwerpen = University of Antwerpen [Antwerpen]
Ramade, Julien [Auteur]
Universiteit Antwerpen = University of Antwerpen [Antwerpen]
Qu, Junling [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Rastogi, Prachi [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Khalili, Adrien [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Chee, Sang-Soo [Auteur]
Physico-chimie et dynamique des surfaces [INSP-E6]
Aubin, Hervé [Auteur]
Centre de Nanosciences et de Nanotechnologies [C2N]
Vincent, Grégory [Auteur]
DOTA, ONERA, Université Paris Saclay [Palaiseau]
Bals, Sara [Auteur]
Universiteit Antwerpen = University of Antwerpen [Antwerpen]
Delerue, Christophe [Auteur]

Physique - IEMN [PHYSIQUE - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Lhuillier, Emmanuel [Auteur]
Institut des Nanosciences de Paris [INSP]
Physico-chimie et dynamique des surfaces [INSP-E6]
Titre de la revue :
ACS Photonics
Pagination :
259–268
Éditeur :
American Chemical Society
Date de publication :
2021-01-20
ISSN :
2330-4022
Mot(s)-clé(s) en anglais :
narrow band-gap nanocrystals
ferroelectric
field-effect transistor
infrared
plasmonic resonator
ferroelectric
field-effect transistor
infrared
plasmonic resonator
Discipline(s) HAL :
Chimie/Matériaux
Physique [physics]/Matière Condensée [cond-mat]
Physique [physics]/Matière Condensée [cond-mat]
Résumé en anglais : [en]
As narrow band gap nanocrystals become a viable building block for the design of infrared sensors, device design needs to match with their actual operating conditions. While in the near IR and shortwave infrared room ...
Lire la suite >As narrow band gap nanocrystals become a viable building block for the design of infrared sensors, device design needs to match with their actual operating conditions. While in the near IR and shortwave infrared room temperature operation have been demonstrated, longer wavelengths still require low temperature operation requiring specific design. Here, we discuss how field-effect transistors (FETs) can be compatible with low temperature detection. To reach this goal two key developments are proposed. First, we report gating of nanocrystal films from SrTiO3 used as a ferroelectric material leading to high gate capacitance with leakage and breakdown free operation in the 4-100 K range. Secondly, we demonstrate that this FET is compatible with a plasmonic resonator which role is to achieve strong light absorption from a thin film used as the channel of the FET. Combining three resonances, broad band absorption from 1.5 to 3 µm reaching 30% is demonstrated. Finally combining gate and enhanced light matter coupling, we show that detectivity can be as high as 10 12 jones for a device presenting a 3 µm cutoff wavelength and 30 K operation.Lire moins >
Lire la suite >As narrow band gap nanocrystals become a viable building block for the design of infrared sensors, device design needs to match with their actual operating conditions. While in the near IR and shortwave infrared room temperature operation have been demonstrated, longer wavelengths still require low temperature operation requiring specific design. Here, we discuss how field-effect transistors (FETs) can be compatible with low temperature detection. To reach this goal two key developments are proposed. First, we report gating of nanocrystal films from SrTiO3 used as a ferroelectric material leading to high gate capacitance with leakage and breakdown free operation in the 4-100 K range. Secondly, we demonstrate that this FET is compatible with a plasmonic resonator which role is to achieve strong light absorption from a thin film used as the channel of the FET. Combining three resonances, broad band absorption from 1.5 to 3 µm reaching 30% is demonstrated. Finally combining gate and enhanced light matter coupling, we show that detectivity can be as high as 10 12 jones for a device presenting a 3 µm cutoff wavelength and 30 K operation.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Source :
Fichiers
- https://hal.archives-ouvertes.fr/hal-03102784/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03102784/document
- Accès libre
- Accéder au document
- https://hal.archives-ouvertes.fr/hal-03102784/document
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- STO-v36.pdf
- Accès libre
- Accéder au document
- STO-v36.pdf
- Accès libre
- Accéder au document