Design optimization of AlInAs-GaInAs HEMTs ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
Titre :
Design optimization of AlInAs-GaInAs HEMTs for low-noise applications
Auteur(s) :
Mateos, Javier [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
González, Tomás [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Pardo, Daniel [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Bollaert, Sylvain [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Parenty, Thierry [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cappy, Alain [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Universidad de Salamanca [España] = University of Salamanca [Spain]
González, Tomás [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Pardo, Daniel [Auteur]
Universidad de Salamanca [España] = University of Salamanca [Spain]
Bollaert, Sylvain [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Parenty, Thierry [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Cappy, Alain [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
IEEE Transactions on Electron Devices
Pagination :
1228-1233
Éditeur :
Institute of Electrical and Electronics Engineers
Date de publication :
2004-08
ISSN :
0018-9383
Mot(s)-clé(s) en anglais :
Semiconductor device modeling
Semiconductor device noise
Semiconductor device doping
Monte Carlo methods
Optimization methods
Resistance
Capacitance
Aluminum compounds
Gallium compounds
MODFETs
Semiconductor device noise
Semiconductor device doping
Monte Carlo methods
Optimization methods
Resistance
Capacitance
Aluminum compounds
Gallium compounds
MODFETs
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
In order to optimize the low-noise performance of 50-nm-gate AlInAs-GalnAs high-electron mobility transistors (HEMTs), by using an ensemble Monte Carlo simulation we study the influence of three important technological ...
Lire la suite >In order to optimize the low-noise performance of 50-nm-gate AlInAs-GalnAs high-electron mobility transistors (HEMTs), by using an ensemble Monte Carlo simulation we study the influence of three important technological parameters on their noise level: the doping of the /spl delta/-doped layer, the width of the devices and the length of the recess. The noise behavior of the devices is firstly analyzed in terms of the physics-based P, R, and C parameters, and then characterized from a practical (circuit oriented) point of view through their four noise parameters: minimum noise figure, F/sub min/, noise resistance, R/sub n/, and complex input admittance, Y/sub opt/ (or reflection coefficient, /spl Gamma//sub opt/). We have observed an enhancement of the noise when the /spl delta/-doping or the device width are increased (a deterioration parallel to that of f/sub max/). Thus, the optimum noise operation is obtained for the lowest possible values of the /spl delta/-doping and device width. However, for small width the effect of the offset parasitic capacitances makes F/sub min/ increase, thus, imposing a limit for the reduction of the noise. Moreover, the increase of R/sub n/ for small W makes the noise tuning condition critical to reach the optimum low-noise operation. We have also confirmed that when shortening the recess length from 100 to 20 nm at each side of the gate F/sub min/ is reduced, with a slight deterioration of f/sub max/, while the static characteristics are not modified.Lire moins >
Lire la suite >In order to optimize the low-noise performance of 50-nm-gate AlInAs-GalnAs high-electron mobility transistors (HEMTs), by using an ensemble Monte Carlo simulation we study the influence of three important technological parameters on their noise level: the doping of the /spl delta/-doped layer, the width of the devices and the length of the recess. The noise behavior of the devices is firstly analyzed in terms of the physics-based P, R, and C parameters, and then characterized from a practical (circuit oriented) point of view through their four noise parameters: minimum noise figure, F/sub min/, noise resistance, R/sub n/, and complex input admittance, Y/sub opt/ (or reflection coefficient, /spl Gamma//sub opt/). We have observed an enhancement of the noise when the /spl delta/-doping or the device width are increased (a deterioration parallel to that of f/sub max/). Thus, the optimum noise operation is obtained for the lowest possible values of the /spl delta/-doping and device width. However, for small width the effect of the offset parasitic capacitances makes F/sub min/ increase, thus, imposing a limit for the reduction of the noise. Moreover, the increase of R/sub n/ for small W makes the noise tuning condition critical to reach the optimum low-noise operation. We have also confirmed that when shortening the recess length from 100 to 20 nm at each side of the gate F/sub min/ is reduced, with a slight deterioration of f/sub max/, while the static characteristics are not modified.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Source :