ZnO/Carbon nanowalls shell/core nanostructures ...
Document type :
Compte-rendu et recension critique d'ouvrage
Title :
ZnO/Carbon nanowalls shell/core nanostructures as electrodes for supercapacitors
Author(s) :
Guerra, Abdelouadoud [Auteur]
Achour, Amine [Auteur]
Vizireanu, Sorin [Auteur]
National Institute for Laser, Plasma and Radiation Physics [INFLPR]
Dinescu, Gheorghe [Auteur]
National Institute for Laser, Plasma and Radiation Physics [INFLPR]
Messaci, Samira [Auteur]
Hadjersi, Toufik [Auteur]
Boukherroub, Rabah [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coffinier, Yannick [Auteur]
NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pireaux, Jean-Jacques [Auteur]
Centre de Recherche en Physique de la Matière et du Rayonnement [Namur] [PMR]
Achour, Amine [Auteur]
Vizireanu, Sorin [Auteur]
National Institute for Laser, Plasma and Radiation Physics [INFLPR]
Dinescu, Gheorghe [Auteur]
National Institute for Laser, Plasma and Radiation Physics [INFLPR]
Messaci, Samira [Auteur]
Hadjersi, Toufik [Auteur]
Boukherroub, Rabah [Auteur]

NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Coffinier, Yannick [Auteur]

NanoBioInterfaces - IEMN [NBI - IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Pireaux, Jean-Jacques [Auteur]
Centre de Recherche en Physique de la Matière et du Rayonnement [Namur] [PMR]
Journal title :
Applied Surface Science
Pages :
926-932
Publisher :
Elsevier
Publication date :
2019-07
ISSN :
0169-4332
English keyword(s) :
Carbon nanowalls
Electrochemical capacitors
PLD deposition
ZnO
Electrochemical capacitors
PLD deposition
ZnO
HAL domain(s) :
Chimie/Chimie analytique
Chimie/Matériaux
Sciences du Vivant [q-bio]/Biochimie, Biologie Moléculaire
Sciences du Vivant [q-bio]/Neurosciences [q-bio.NC]
Chimie
Physique [physics]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Chimie/Matériaux
Sciences du Vivant [q-bio]/Biochimie, Biologie Moléculaire
Sciences du Vivant [q-bio]/Neurosciences [q-bio.NC]
Chimie
Physique [physics]
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
English abstract : [en]
In this work, carbon nanowalls (CNW) were coated with zinc oxide (ZnO) for use as supercapacitor electrodes. The ZnO layers of different thicknesses were deposited using pulsed laser ablation in oxygen reactive atmosphere. ...
Show more >In this work, carbon nanowalls (CNW) were coated with zinc oxide (ZnO) for use as supercapacitor electrodes. The ZnO layers of different thicknesses were deposited using pulsed laser ablation in oxygen reactive atmosphere. The performance of the CNW-ZnO electrodes was found to be dependent on the thickness of ZnO deposit, which in turn influences the specific capacitance and capacitance retention of the CNW-ZnO electrodes. The areal capacitance of the CNW-ZnO measured in mild electrolyte of 1 M KCl was as high as 4.3 mF•cm −2 at a current density of 0.2 mA•cm −2 and 1.41 mF•cm −2 at a scan rate of 10 mV•s −1 with an enhanced capacitance stability over 26,000 cycles. Such results demonstrate the potential use of ZnO nanostructures for low cost and high performance material for electrochemical capacitors.Show less >
Show more >In this work, carbon nanowalls (CNW) were coated with zinc oxide (ZnO) for use as supercapacitor electrodes. The ZnO layers of different thicknesses were deposited using pulsed laser ablation in oxygen reactive atmosphere. The performance of the CNW-ZnO electrodes was found to be dependent on the thickness of ZnO deposit, which in turn influences the specific capacitance and capacitance retention of the CNW-ZnO electrodes. The areal capacitance of the CNW-ZnO measured in mild electrolyte of 1 M KCl was as high as 4.3 mF•cm −2 at a current density of 0.2 mA•cm −2 and 1.41 mF•cm −2 at a scan rate of 10 mV•s −1 with an enhanced capacitance stability over 26,000 cycles. Such results demonstrate the potential use of ZnO nanostructures for low cost and high performance material for electrochemical capacitors.Show less >
Language :
Anglais
Popular science :
Non
Source :
Files
- https://hal.archives-ouvertes.fr/hal-03335610/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03335610/document
- Open access
- Access the document
- https://hal.archives-ouvertes.fr/hal-03335610/document
- Open access
- Access the document
- document
- Open access
- Access the document
- Guerra_2019_AppliedSurfaceScience-1.pdf
- Open access
- Access the document