Kernel-Partial Least Squares regression ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Kernel-Partial Least Squares regression coupled to pseudo-sample trajectories for the analysis of mixture designs of experiments
Auteur(s) :
Vitale, Raffaele [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Palací-López, Daniel [Auteur]
Kerkenaar, Harmen H.M. [Auteur]
Postma, Geert J. [Auteur]
Buydens, Lutgarde M.C. [Auteur]
Ferrer, Alberto [Auteur]
Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 [LASIRE]
Palací-López, Daniel [Auteur]
Kerkenaar, Harmen H.M. [Auteur]
Postma, Geert J. [Auteur]
Buydens, Lutgarde M.C. [Auteur]
Ferrer, Alberto [Auteur]
Titre de la revue :
Chemometrics and Intelligent Laboratory Systems
Numéro :
175
Pagination :
37-46
Date de publication :
2018-04
Discipline(s) HAL :
Chimie/Chimie théorique et/ou physique
Résumé en anglais : [en]
This article explores the potential of Kernel-Partial Least Squares (K-PLS) regression for the analysis of data proceeding from mixture designs of experiments. Gower's idea of pseudo-sample trajectories is exploited for ...
Lire la suite >This article explores the potential of Kernel-Partial Least Squares (K-PLS) regression for the analysis of data proceeding from mixture designs of experiments. Gower's idea of pseudo-sample trajectories is exploited for interpretation purposes. The results show that, when the datasets under study are affected by severe non-linearities and comprise few observations, the proposed approach can represent a feasible alternative to classical methodologies (i.e. Scheffé polynomial fitting by means of Ordinary Least Squares - OLS - and Cox polynomial fitting by means of Partial Least Squares - PLS). Furthermore, a way of recovering the parameters of a Scheffé model (provided that it holds and has the same complexity as the K-PLS one) from the trend of the aforementioned pseudo-sample trajectories is illustrated via a simulated case-study.Lire moins >
Lire la suite >This article explores the potential of Kernel-Partial Least Squares (K-PLS) regression for the analysis of data proceeding from mixture designs of experiments. Gower's idea of pseudo-sample trajectories is exploited for interpretation purposes. The results show that, when the datasets under study are affected by severe non-linearities and comprise few observations, the proposed approach can represent a feasible alternative to classical methodologies (i.e. Scheffé polynomial fitting by means of Ordinary Least Squares - OLS - and Cox polynomial fitting by means of Partial Least Squares - PLS). Furthermore, a way of recovering the parameters of a Scheffé model (provided that it holds and has the same complexity as the K-PLS one) from the trend of the aforementioned pseudo-sample trajectories is illustrated via a simulated case-study.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Non spécifiée
Vulgarisation :
Non
Établissement(s) :
CNRS
ENSCL
Université de Lille
ENSCL
Université de Lille
Collections :
Date de dépôt :
2021-11-16T08:23:26Z
2024-02-23T08:57:48Z
2024-02-23T08:57:48Z