Nonlinear sigma models on constant curvature ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Nonlinear sigma models on constant curvature target manifolds: A functional renormalization group approach
Auteur(s) :
Efremov, Alexander N. [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Rançon, Adam [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Rançon, Adam [Auteur]

Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Titre de la revue :
Physical Review D
Pagination :
105003
Éditeur :
American Physical Society
Date de publication :
2021
ISSN :
2470-0010
Mot(s)-clé(s) en anglais :
renormalization group
flow
splitting
effective action
reparametrization
scale dependence
sigma model: nonlinear
curvature
background field
Ward identity
flow
splitting
effective action
reparametrization
scale dependence
sigma model: nonlinear
curvature
background field
Ward identity
Discipline(s) HAL :
Physique [physics]/Physique des Hautes Energies - Théorie [hep-th]
Résumé en anglais : [en]
We study nonlinear sigma models on target manifolds with constant (positive or negative) curvature using the functional renormalization group and the background field method. We pay particular attention to the splitting ...
Lire la suite >We study nonlinear sigma models on target manifolds with constant (positive or negative) curvature using the functional renormalization group and the background field method. We pay particular attention to the splitting Ward identities associated to the invariance under reparametrization of the background field. Implementing these Ward identities imposes to use the curvature as a formal expansion parameter, which allows us to close the flow equation of the (scale-dependent) effective action consistently to first order in the curvature. We shed new light on previous work using the background field method.Lire moins >
Lire la suite >We study nonlinear sigma models on target manifolds with constant (positive or negative) curvature using the functional renormalization group and the background field method. We pay particular attention to the splitting Ward identities associated to the invariance under reparametrization of the background field. Implementing these Ward identities imposes to use the curvature as a formal expansion parameter, which allows us to close the flow equation of the (scale-dependent) effective action consistently to first order in the curvature. We shed new light on previous work using the background field method.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
Source :
Fichiers
- http://arxiv.org/pdf/2109.09364
- Accès libre
- Accéder au document
- 2109.09364
- Accès libre
- Accéder au document