Monolayer molybdenum disulfide switches ...
Type de document :
Compte-rendu et recension critique d'ouvrage
Titre :
Monolayer molybdenum disulfide switches for 6G communication systems
Auteur(s) :
Kim, Myungsoo [Auteur]
University of Texas at Austin [Austin]
Ulsan National Institute of Science and Technology [UNIST]
Ducournau, Guillaume [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Photonique THz - IEMN [PHOTONIQUE THZ - IEMN]
Skrzypczak, Simon [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Carbon - IEMN [CARBON - IEMN]
Yang, Sung Jin [Auteur]
University of Texas at Austin [Austin]
Szriftgiser, Pascal [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Wainstein, Nicolas [Auteur]
Technion - Israel Institute of Technology [Haifa]
Stern, Keren [Auteur]
Technion - Israel Institute of Technology [Haifa]
Happy, Henri [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Carbon - IEMN [CARBON - IEMN]
Yalon, Eilam [Auteur]
Technion - Israel Institute of Technology [Haifa]
Pallecchi, Emiliano [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Carbon - IEMN [CARBON - IEMN]
Akinwande, Deji [Auteur]
University of Texas at Austin [Austin]
University of Texas at Austin [Austin]
Ulsan National Institute of Science and Technology [UNIST]
Ducournau, Guillaume [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Photonique THz - IEMN [PHOTONIQUE THZ - IEMN]
Skrzypczak, Simon [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Carbon - IEMN [CARBON - IEMN]
Yang, Sung Jin [Auteur]
University of Texas at Austin [Austin]
Szriftgiser, Pascal [Auteur]
Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 [PhLAM]
Wainstein, Nicolas [Auteur]
Technion - Israel Institute of Technology [Haifa]
Stern, Keren [Auteur]
Technion - Israel Institute of Technology [Haifa]
Happy, Henri [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Carbon - IEMN [CARBON - IEMN]
Yalon, Eilam [Auteur]
Technion - Israel Institute of Technology [Haifa]
Pallecchi, Emiliano [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Carbon - IEMN [CARBON - IEMN]
Akinwande, Deji [Auteur]
University of Texas at Austin [Austin]
Titre de la revue :
Nature Electronics
Pagination :
367–373
Éditeur :
Springer Nature
Date de publication :
2022
ISSN :
2520-1131
Mot(s)-clé(s) en anglais :
Electrical and electronic engineering
Electronic devices
Two-dimensional materials
Electronic devices
Two-dimensional materials
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Résumé en anglais : [en]
Atomically thin two-dimensional materials—including transitional metal dichalcogenides and hexagonal boron nitride—can exhibit non-volatile resistive switching. This switching behaviour could be used to create analogue ...
Lire la suite >Atomically thin two-dimensional materials—including transitional metal dichalcogenides and hexagonal boron nitride—can exhibit non-volatile resistive switching. This switching behaviour could be used to create analogue switches for use in high-frequency communication, but has so far been limited to frequencies relevant to the fifth generation of wireless communication technology. Here we show that non-volatile switches made from monolayer molybdenum disulfide in a metal–insulator–metal structure can operate at frequencies corresponding to the sixth-generation communication band (around 100–500 GHz). The switches exhibit low insertion loss in the ON state and high isolation in the OFF state up to 480 GHz with sub-nanosecond pulse switching. We obtain the eye diagrams and constellation diagrams at various data transmission rates and modulations to evaluate the device performance, including real-time data communication up to 100 Gbit s−1 at a carrier frequency of 320 GHz, with a low bit error rate and high signal-to-noise ratio.Lire moins >
Lire la suite >Atomically thin two-dimensional materials—including transitional metal dichalcogenides and hexagonal boron nitride—can exhibit non-volatile resistive switching. This switching behaviour could be used to create analogue switches for use in high-frequency communication, but has so far been limited to frequencies relevant to the fifth generation of wireless communication technology. Here we show that non-volatile switches made from monolayer molybdenum disulfide in a metal–insulator–metal structure can operate at frequencies corresponding to the sixth-generation communication band (around 100–500 GHz). The switches exhibit low insertion loss in the ON state and high isolation in the OFF state up to 480 GHz with sub-nanosecond pulse switching. We obtain the eye diagrams and constellation diagrams at various data transmission rates and modulations to evaluate the device performance, including real-time data communication up to 100 Gbit s−1 at a carrier frequency of 320 GHz, with a low bit error rate and high signal-to-noise ratio.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Projet ANR :
SWItches à base de dichalcogénures de métaux de transition pour des applications RF
Transmissions TERAhertz combinant électronique état SOlide et photoNIQue
Multiplexage SPATIal en gamme térahertz pour les cOmmunications sans fil à 1 TERAbit/s
Investissements en NANOfabrication pour les nanotechnologies du FUTUR
Transmissions TERAhertz combinant électronique état SOlide et photoNIQue
Multiplexage SPATIal en gamme térahertz pour les cOmmunications sans fil à 1 TERAbit/s
Investissements en NANOfabrication pour les nanotechnologies du FUTUR
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Monolayer_molybdenum_disulfide_switches_for_6g_communication_systems.pdf
- Accès libre
- Accéder au document