Machine Learning Identifies Chronic Low ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Machine Learning Identifies Chronic Low Back Pain Patients from an Instrumented Trunk Bending and Return Test
Auteur(s) :
Thiry, Paul [Auteur]
Houry, Martin [Auteur]
Philippe, Laurent [Auteur]
Nocent, Olivier [Auteur]
Buisseret, Fabien [Auteur]
Dierick, Frédéric [Auteur]
Slama, Rim [Auteur]
Bertucci, William [Auteur]
Thévenon, André [Auteur]
444281|||Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Simoneau-Buessinger, Emilie [Auteur]
Houry, Martin [Auteur]
Philippe, Laurent [Auteur]
Nocent, Olivier [Auteur]
Buisseret, Fabien [Auteur]
Dierick, Frédéric [Auteur]
Slama, Rim [Auteur]
Bertucci, William [Auteur]
Thévenon, André [Auteur]
444281|||Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS) - ULR 7369 - ULR 4488 [URePSSS]
Centre Hospitalier Régional Universitaire [CHU Lille] [CHRU Lille]
Simoneau-Buessinger, Emilie [Auteur]
Titre de la revue :
Sensors
Nom court de la revue :
Sensors
Numéro :
22
Pagination :
5027
Éditeur :
MDPI AG
Date de publication :
2022-07-03
ISSN :
1424-8220
Mot(s)-clé(s) en anglais :
artificial intelligence
machine learning
inertial measurement unit—IMU
movement complexity
sample entropy
trunk flexion
machine learning
inertial measurement unit—IMU
movement complexity
sample entropy
trunk flexion
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Informatique [cs]/Interface homme-machine [cs.HC]
Informatique [cs]/Synthèse d'image et réalité virtuelle [cs.GR]
Informatique [cs]/Interface homme-machine [cs.HC]
Informatique [cs]/Synthèse d'image et réalité virtuelle [cs.GR]
Résumé en anglais : [en]
Nowadays, the better assessment of low back pain (LBP) is an important challenge, as it is the leading musculoskeletal condition worldwide in terms of years of disability. The objective of this study was to evaluate the ...
Lire la suite >Nowadays, the better assessment of low back pain (LBP) is an important challenge, as it is the leading musculoskeletal condition worldwide in terms of years of disability. The objective of this study was to evaluate the relevance of various machine learning (ML) algorithms and Sample Entropy (SampEn), which assesses the complexity of motion variability in identifying the condition of low back pain. Twenty chronic low-back pain (CLBP) patients and 20 healthy non-LBP participants performed 1-min repetitive bending (flexion) and return (extension) trunk movements. Analysis was performed using the time series recorded by three inertial sensors attached to the participants. It was found that SampEn was significantly lower in CLBP patients, indicating a loss of movement complexity due to LBP. Gaussian Naive Bayes ML proved to be the best of the various tested algorithms, achieving 79% accuracy in identifying CLBP patients. Angular velocity of flexion movement was the most discriminative feature in the ML analysis. This study demonstrated that: supervised ML and a complexity assessment of trunk movement variability are useful in the identification of CLBP condition, and that simple kinematic indicators are sensitive to this condition. Therefore, ML could be progressively adopted by clinicians in the assessment of CLBP patients.Lire moins >
Lire la suite >Nowadays, the better assessment of low back pain (LBP) is an important challenge, as it is the leading musculoskeletal condition worldwide in terms of years of disability. The objective of this study was to evaluate the relevance of various machine learning (ML) algorithms and Sample Entropy (SampEn), which assesses the complexity of motion variability in identifying the condition of low back pain. Twenty chronic low-back pain (CLBP) patients and 20 healthy non-LBP participants performed 1-min repetitive bending (flexion) and return (extension) trunk movements. Analysis was performed using the time series recorded by three inertial sensors attached to the participants. It was found that SampEn was significantly lower in CLBP patients, indicating a loss of movement complexity due to LBP. Gaussian Naive Bayes ML proved to be the best of the various tested algorithms, achieving 79% accuracy in identifying CLBP patients. Angular velocity of flexion movement was the most discriminative feature in the ML analysis. This study demonstrated that: supervised ML and a complexity assessment of trunk movement variability are useful in the identification of CLBP condition, and that simple kinematic indicators are sensitive to this condition. Therefore, ML could be progressively adopted by clinicians in the assessment of CLBP patients.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet Européen :
Établissement(s) :
Université de Lille
Univ. Artois
Univ. Littoral Côte d’Opale
Univ. Artois
Univ. Littoral Côte d’Opale
Équipe(s) de recherche :
Activité Physique, Muscle, Santé (APMS)
Date de dépôt :
2022-07-10T05:02:26Z
2022-07-11T09:16:28Z
2022-07-11T09:16:28Z
Fichiers
- sensors-22-05027.pdf
- Version éditeur
- Accès libre
- Accéder au document