• English
    • français
  • Help
  •  | 
  • Contact
  •  | 
  • About
  •  | 
  • Login
  • HAL portal
  •  | 
  • Pages Pro
  • EN
  •  / 
  • FR
View Item 
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
  •   LillOA Home
  • Liste des unités
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid Acquisition Processes in Surrogate-based ...
  • BibTeX
  • CSV
  • Excel
  • RIS

Document type :
Communication dans un congrès avec actes
Title :
Hybrid Acquisition Processes in Surrogate-based Optimization. Application to Covid-19 Contact Reduction
Author(s) :
Briffoteaux, Guillaume [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
University of Mons [Belgium] [UMONS]
Melab, Nouredine [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Mezmaz, Mohand [Auteur]
University of Mons [Belgium] [UMONS]
Tuyttens, Daniel [Auteur]
University of Mons [Belgium] [UMONS]
Conference title :
BIOMA 2022 - International Conference on Bioinspired Optimisation Methods and Their Applications
City :
Maribor
Country :
Slovénie
Start date of the conference :
2022-11-17
HAL domain(s) :
Mathématiques [math]/Optimisation et contrôle [math.OC]
Informatique [cs]/Apprentissage [cs.LG]
Informatique [cs]/Modélisation et simulation
English abstract : [en]
Parallel Surrogate-Assisted Evolutionary Algorithms (P-SAEAs) are based on surrogate-informed reproduction operators to propose new candidates to solve computationally expensive optimization problems. Differently, Parallel ...
Show more >
Parallel Surrogate-Assisted Evolutionary Algorithms (P-SAEAs) are based on surrogate-informed reproduction operators to propose new candidates to solve computationally expensive optimization problems. Differently, Parallel Surrogate-Driven Algorithms (P-SDAs) rely on the optimization of a surrogate-informed metric of promisingness to acquire new solutions. The former are promoted to deal with moderately computationally expensive problems while the latter are put forward on very costly problems. This paper investigates the design of hybrid strategies combining the acquisition processes of both P-SAEAs and P-SDAs to retain the best of both categories of methods. The objective is to reach robustness with respect to the computational budgets and parallel scalability.Show less >
Language :
Anglais
Peer reviewed article :
Oui
Audience :
Internationale
Popular science :
Non
Collections :
  • Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Source :
Harvested from HAL
Files
Thumbnail
  • https://hal.inria.fr/hal-03770742/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03770742/document
  • Open access
  • Access the document
Thumbnail
  • https://hal.inria.fr/hal-03770742/document
  • Open access
  • Access the document
Université de Lille

Mentions légales
Université de Lille © 2017