A detailed experimental and kinetic modeling ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
A detailed experimental and kinetic modeling study on pyrolysis and oxidation of oxymethylene ether-2 (OME-2)
Auteur(s) :
De Ras, Kevin [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Kusenberg, Marvin [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Vanhove, Guillaume [Auteur]
Physicochimie des Processus de Combustion et de l'Atmosphère (PC2A) - UMR 8522
Fenard, Yann [Auteur]
Physicochimie des Processus de Combustion et de l'Atmosphère (PC2A) - UMR 8522
Eschenbacher, Andreas [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Varghese, Robin J. [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Aerssens, Jeroen [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Van de Vijver, Ruben [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Tran, Luc-Sy [Auteur]
Physicochimie des Processus de Combustion et de l'Atmosphère (PC2A) - UMR 8522
Thybaut, Joris W. [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Van Geem, Kevin M. [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Kusenberg, Marvin [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Vanhove, Guillaume [Auteur]

Physicochimie des Processus de Combustion et de l'Atmosphère (PC2A) - UMR 8522
Fenard, Yann [Auteur]

Physicochimie des Processus de Combustion et de l'Atmosphère (PC2A) - UMR 8522
Eschenbacher, Andreas [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Varghese, Robin J. [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Aerssens, Jeroen [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Van de Vijver, Ruben [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Tran, Luc-Sy [Auteur]

Physicochimie des Processus de Combustion et de l'Atmosphère (PC2A) - UMR 8522
Thybaut, Joris W. [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Van Geem, Kevin M. [Auteur]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Titre de la revue :
COMBUSTION AND FLAME
Nom court de la revue :
Combustion and Flame
Numéro :
238
Pagination :
111914
Éditeur :
Elsevier BV
Date de publication :
2022-04
ISSN :
0010-2180
Mot(s)-clé(s) en anglais :
Polyoxymethylene dimethyl ethers
Oxymethylene ether-2
Quantum chemistry
Automatic kinetic modeling
Pyrolysis
Oxidation
Oxymethylene ether-2
Quantum chemistry
Automatic kinetic modeling
Pyrolysis
Oxidation
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Chimie/Chimie théorique et/ou physique
Physique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph]
Chimie/Chimie théorique et/ou physique
Physique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph]
Résumé en anglais : [en]
The application of oxymethylene ethers as an alternative fuel (additive) produced via carbon capture and utilization can lead to lower CO2 and particulate matter emissions compared to fossil fuels. To improve the understanding ...
Lire la suite >The application of oxymethylene ethers as an alternative fuel (additive) produced via carbon capture and utilization can lead to lower CO2 and particulate matter emissions compared to fossil fuels. To improve the understanding of the pyrolysis and oxidation chemistry of oxymethylene ether-2 (OME-2), a combined experimental and kinetic modeling study has been carried out. Pyrolysis experiments were performed using a quartz reactor over a broad temperature range, from 373 to 1150 K, to elucidate both the primary and secondary pyrolysis chemistry. The thermal decomposition of OME-2 is initiated via a dominant formaldehyde elimination reaction. Radical chemistry becomes only significant at higher temperatures (>800 K) and competes with unimolecular decomposition. Radicals originate mainly from the decomposition of carbenes. Important intermediate products formed during pyrolysis are dimethoxymethane, formaldehyde, methane and methyl formate. The formation of products with carbon-carbon bonds is minor since only carbon-oxygen bonds are present in OME-2. The oxidation chemistry was investigated between 600 and 715 K by ignition delay time measurements in a rapid compression machine for OME-2/air mixtures with an equivalence ratio ϕ of 0.5. No negative temperature coefficient region is observed. An elementary step kinetic model is constructed with the automatic kinetic model generator Genesys starting from the base mechanism AramcoMech 1.3. Important thermodynamic parameters and reaction rate coefficients to describe the low- and high-temperature decomposition chemistry are obtained from quantum chemical calculations. The new kinetic model satisfactorily reproduces the measured ignition delay times, as well as major product mole fractions from the pyrolysis experiments within the experimental error margin of 10% on average, without fitting thermodynamic or kinetic parameters. Finally, rate of production analyses reveal the important decomposition pathways to methyl formate, formaldehyde and others under pyrolysis and low-temperature oxidation conditions.Lire moins >
Lire la suite >The application of oxymethylene ethers as an alternative fuel (additive) produced via carbon capture and utilization can lead to lower CO2 and particulate matter emissions compared to fossil fuels. To improve the understanding of the pyrolysis and oxidation chemistry of oxymethylene ether-2 (OME-2), a combined experimental and kinetic modeling study has been carried out. Pyrolysis experiments were performed using a quartz reactor over a broad temperature range, from 373 to 1150 K, to elucidate both the primary and secondary pyrolysis chemistry. The thermal decomposition of OME-2 is initiated via a dominant formaldehyde elimination reaction. Radical chemistry becomes only significant at higher temperatures (>800 K) and competes with unimolecular decomposition. Radicals originate mainly from the decomposition of carbenes. Important intermediate products formed during pyrolysis are dimethoxymethane, formaldehyde, methane and methyl formate. The formation of products with carbon-carbon bonds is minor since only carbon-oxygen bonds are present in OME-2. The oxidation chemistry was investigated between 600 and 715 K by ignition delay time measurements in a rapid compression machine for OME-2/air mixtures with an equivalence ratio ϕ of 0.5. No negative temperature coefficient region is observed. An elementary step kinetic model is constructed with the automatic kinetic model generator Genesys starting from the base mechanism AramcoMech 1.3. Important thermodynamic parameters and reaction rate coefficients to describe the low- and high-temperature decomposition chemistry are obtained from quantum chemical calculations. The new kinetic model satisfactorily reproduces the measured ignition delay times, as well as major product mole fractions from the pyrolysis experiments within the experimental error margin of 10% on average, without fitting thermodynamic or kinetic parameters. Finally, rate of production analyses reveal the important decomposition pathways to methyl formate, formaldehyde and others under pyrolysis and low-temperature oxidation conditions.Lire moins >
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Commentaire :
https://hal.archives-ouvertes.fr/hal-03538344
Établissement(s) :
Université de Lille
CNRS
CNRS
Équipe(s) de recherche :
PhysicoChimie de la Combustion (PC2)
Date de dépôt :
2022-10-20T12:54:01Z
2022-10-21T07:59:31Z
2022-10-21T07:59:31Z
Fichiers
- Manuscript_OME2_for Lilloa_HAL.pdf
- Version finale acceptée pour publication (postprint)
- Accès libre
- Accéder au document