Guaranteed Quantity of Interest Error ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
Guaranteed Quantity of Interest Error Estimate Based on Equilibrated Flux Reconstruction
Author(s) :
Tang, Zuqi [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Lou, Suyang [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Benabou, Abdelkader [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Creuse, Emmanuel [Auteur]
Laboratoire de Matériaux Céramiques et de Mathématiques [CERAMATHS]
Nicaise, Serge [Auteur]
Laboratoire de Matériaux Céramiques et de Mathématiques [CERAMATHS]
Mipo, Jean-Claude [Auteur]
VALEO
Lou, Suyang [Auteur]

Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Lou, Suyang [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Benabou, Abdelkader [Auteur]

Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Creuse, Emmanuel [Auteur]
Laboratoire de Matériaux Céramiques et de Mathématiques [CERAMATHS]
Nicaise, Serge [Auteur]
Laboratoire de Matériaux Céramiques et de Mathématiques [CERAMATHS]
Mipo, Jean-Claude [Auteur]
VALEO
Lou, Suyang [Auteur]
Journal title :
Ieee Transactions on Magnetics
Abbreviated title :
IEEE Trans. Magn.
Volume number :
57
Pages :
1-4
Publisher :
Institute of Electrical and Electronics Engineers (IEEE)
Publication date :
2021-06
ISSN :
0018-9464
English keyword(s) :
A posteriori error estimate
equilibrated flux reconstruction
finite element method (FEM)
magnetic flux density
magnetostatic problem
quantity of interest (QOI)
equilibrated flux reconstruction
finite element method (FEM)
magnetic flux density
magnetostatic problem
quantity of interest (QOI)
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
The quality of a local physical quantity obtained by the numerical method, such as the finite element method (FEM), attracts more and more attention in computational electromagnetism. Inspired by the idea of goal-oriented ...
Show more >The quality of a local physical quantity obtained by the numerical method, such as the finite element method (FEM), attracts more and more attention in computational electromagnetism. Inspired by the idea of goal-oriented error estimate given for the Laplace problem, this work is devoted to a guaranteed a posteriori error estimate adapted for the quantity of interest (QOI) linked to magnetostatic problems, in particular, to the value of the magnetic flux density. The development is principally based on an equilibrated flux construction, which ensures fully computable estimators without any unknown constant. The main steps of the mathematical development are given in detail with the physical interpretation. An academic example using an analytical solution is considered to illustrate the performance of the approach, and a discussion about different aspects related to the practical point of view is proposed.Show less >
Show more >The quality of a local physical quantity obtained by the numerical method, such as the finite element method (FEM), attracts more and more attention in computational electromagnetism. Inspired by the idea of goal-oriented error estimate given for the Laplace problem, this work is devoted to a guaranteed a posteriori error estimate adapted for the quantity of interest (QOI) linked to magnetostatic problems, in particular, to the value of the magnetic flux density. The development is principally based on an equilibrated flux construction, which ensures fully computable estimators without any unknown constant. The main steps of the mathematical development are given in detail with the physical interpretation. An academic example using an analytical solution is considered to illustrate the performance of the approach, and a discussion about different aspects related to the practical point of view is proposed.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
Centrale Lille
Arts et Métiers Sciences et Technologies
Junia HEI
Centrale Lille
Arts et Métiers Sciences et Technologies
Junia HEI
Research team(s) :
Équipe Outils et Méthodes Numériques
Submission date :
2023-01-25T00:59:51Z
2023-01-26T10:09:45Z
2023-01-27T09:11:10Z
2023-01-26T10:09:45Z
2023-01-27T09:11:10Z