Guaranteed Quantity of Interest Error ...
Type de document :
Article dans une revue scientifique: Article original
URL permanente :
Titre :
Guaranteed Quantity of Interest Error Estimate Based on Equilibrated Flux Reconstruction
Auteur(s) :
Tang, Zuqi [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Lou, Suyang [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Benabou, Abdelkader [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Creuse, Emmanuel [Auteur]
Laboratoire de Matériaux Céramiques et de Mathématiques [CERAMATHS]
Nicaise, Serge [Auteur]
Laboratoire de Matériaux Céramiques et de Mathématiques [CERAMATHS]
Mipo, Jean-Claude [Auteur]
VALEO
Lou, Suyang [Auteur]

Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Lou, Suyang [Auteur]
Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Benabou, Abdelkader [Auteur]

Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]
Creuse, Emmanuel [Auteur]
Laboratoire de Matériaux Céramiques et de Mathématiques [CERAMATHS]
Nicaise, Serge [Auteur]
Laboratoire de Matériaux Céramiques et de Mathématiques [CERAMATHS]
Mipo, Jean-Claude [Auteur]
VALEO
Lou, Suyang [Auteur]
Titre de la revue :
Ieee Transactions on Magnetics
Nom court de la revue :
IEEE Trans. Magn.
Numéro :
57
Pagination :
1-4
Éditeur :
Institute of Electrical and Electronics Engineers (IEEE)
Date de publication :
2021-06
ISSN :
0018-9464
Mot(s)-clé(s) en anglais :
A posteriori error estimate
equilibrated flux reconstruction
finite element method (FEM)
magnetic flux density
magnetostatic problem
quantity of interest (QOI)
equilibrated flux reconstruction
finite element method (FEM)
magnetic flux density
magnetostatic problem
quantity of interest (QOI)
Discipline(s) HAL :
Sciences de l'ingénieur [physics]
Résumé en anglais : [en]
The quality of a local physical quantity obtained by the numerical method, such as the finite element method (FEM), attracts more and more attention in computational electromagnetism. Inspired by the idea of goal-oriented ...
Lire la suite >The quality of a local physical quantity obtained by the numerical method, such as the finite element method (FEM), attracts more and more attention in computational electromagnetism. Inspired by the idea of goal-oriented error estimate given for the Laplace problem, this work is devoted to a guaranteed a posteriori error estimate adapted for the quantity of interest (QOI) linked to magnetostatic problems, in particular, to the value of the magnetic flux density. The development is principally based on an equilibrated flux construction, which ensures fully computable estimators without any unknown constant. The main steps of the mathematical development are given in detail with the physical interpretation. An academic example using an analytical solution is considered to illustrate the performance of the approach, and a discussion about different aspects related to the practical point of view is proposed.Lire moins >
Lire la suite >The quality of a local physical quantity obtained by the numerical method, such as the finite element method (FEM), attracts more and more attention in computational electromagnetism. Inspired by the idea of goal-oriented error estimate given for the Laplace problem, this work is devoted to a guaranteed a posteriori error estimate adapted for the quantity of interest (QOI) linked to magnetostatic problems, in particular, to the value of the magnetic flux density. The development is principally based on an equilibrated flux construction, which ensures fully computable estimators without any unknown constant. The main steps of the mathematical development are given in detail with the physical interpretation. An academic example using an analytical solution is considered to illustrate the performance of the approach, and a discussion about different aspects related to the practical point of view is proposed.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
Centrale Lille
Arts et Métiers Sciences et Technologies
Junia HEI
Centrale Lille
Arts et Métiers Sciences et Technologies
Junia HEI
Équipe(s) de recherche :
Équipe Outils et Méthodes Numériques
Date de dépôt :
2023-01-25T00:59:51Z
2023-01-26T10:09:45Z
2023-01-27T09:11:10Z
2023-01-26T10:09:45Z
2023-01-27T09:11:10Z