Decision/objective space trajectory networks ...
Type de document :
Communication dans un congrès avec actes
Titre :
Decision/objective space trajectory networks for multi-objective combinatorial optimisation
Auteur(s) :
Ochoa, Gabriela [Auteur]
University of Stirling
Liefooghe, Arnaud [Auteur]
Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Lavinas, Yuri [Auteur]
Université de Tsukuba = University of Tsukuba
Aranha, Claus [Auteur]
Université de Tsukuba = University of Tsukuba
University of Stirling
Liefooghe, Arnaud [Auteur]

Optimisation de grande taille et calcul large échelle [BONUS]
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Lavinas, Yuri [Auteur]
Université de Tsukuba = University of Tsukuba
Aranha, Claus [Auteur]
Université de Tsukuba = University of Tsukuba
Titre de la manifestation scientifique :
EvoCOP 2023 - 23rd European Conference on Evolutionary Computation in Combinatorial Optimization
Ville :
Brno
Pays :
République tchèque
Date de début de la manifestation scientifique :
2023-04-12
Titre de l’ouvrage :
Lecture Notes in Computer Science
Titre de la revue :
Evolutionary Computation in Combinatorial Optimization
Éditeur :
Springer Nature Switzerland
Lieu de publication :
Cham
Date de publication :
2023-04
Mot(s)-clé(s) en anglais :
algorithm analysis
search trajectory networks
combinatorial optimisation
multi-objective optimisation
visualisation
search trajectory networks
combinatorial optimisation
multi-objective optimisation
visualisation
Discipline(s) HAL :
Informatique [cs]
Informatique [cs]/Intelligence artificielle [cs.AI]
Computer Science [cs]/Operations Research [math.OC]
Informatique [cs]/Intelligence artificielle [cs.AI]
Computer Science [cs]/Operations Research [math.OC]
Résumé en anglais : [en]
This paper adapts a graph-based analysis and visualisation tool, search trajectory networks (STNs) to multi-objective combinatorial optimisation. We formally define multi-objective STNs and apply them to study the dynamics ...
Lire la suite >This paper adapts a graph-based analysis and visualisation tool, search trajectory networks (STNs) to multi-objective combinatorial optimisation. We formally define multi-objective STNs and apply them to study the dynamics of two state-of-the-art multi-objective evolutionary algorithms: MOEA/D and NSGA2. In terms of benchmark, we consider two- and three-objective ρmnk-landscapes for constructing multi-objective multi-modal landscapes with objective correlation. We find that STN metrics and visualisation offer valuable insights into both problem structure and algorithm performance. Most previous visual tools in multi-objective optimisation consider the objective space only. Instead, our newly proposed tool asses algorithm behaviour in the decision and objective spaces simultaneously.Lire moins >
Lire la suite >This paper adapts a graph-based analysis and visualisation tool, search trajectory networks (STNs) to multi-objective combinatorial optimisation. We formally define multi-objective STNs and apply them to study the dynamics of two state-of-the-art multi-objective evolutionary algorithms: MOEA/D and NSGA2. In terms of benchmark, we consider two- and three-objective ρmnk-landscapes for constructing multi-objective multi-modal landscapes with objective correlation. We find that STN metrics and visualisation offer valuable insights into both problem structure and algorithm performance. Most previous visual tools in multi-objective optimisation consider the objective space only. Instead, our newly proposed tool asses algorithm behaviour in the decision and objective spaces simultaneously.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Collections :
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- ochoa_evocop2023.pdf
- Accès libre
- Accéder au document
- document
- Accès libre
- Accéder au document
- ochoa_evocop2023.pdf
- Accès libre
- Accéder au document