Statistically Prioritized and Contextualized ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
PMID :
URL permanente :
Titre :
Statistically Prioritized and Contextualized Clinical Decision Support Systems, the Future of Adverse Drug Events Prevention?
Auteur(s) :
Chazard, Emmanuel [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Beuscart, Jean-Baptiste [Auteur]
METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Rochoy, Michael [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Dalleur, Olivia [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Décaudin, Bertrand [Auteur]
Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA) - ULR 7365
Odou, Pascal [Auteur]
Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA) - ULR 7365
Ficheur, Gregoire [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]

METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Beuscart, Jean-Baptiste [Auteur]

METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694
Rochoy, Michael [Auteur]
Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Dalleur, Olivia [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Décaudin, Bertrand [Auteur]

Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA) - ULR 7365
Odou, Pascal [Auteur]

Groupe de Recherche sur les formes Injectables et les Technologies Associées (GRITA) - ULR 7365
Ficheur, Gregoire [Auteur]

Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS]
Titre de la revue :
Studies in Health Technology and Informatics
Nom court de la revue :
Stud Health Technol Inform
Numéro :
270
Pagination :
683-687
Date de publication :
2020-06
ISSN :
1879-8365
Mot(s)-clé(s) en anglais :
Adverse drug events
Clinical decision support systems
data reuse
Clinical decision support systems
data reuse
Discipline(s) HAL :
Sciences du Vivant [q-bio]
Résumé en anglais : [en]
Clinical decision support systems (CDSS) fail to prevent adverse drug events (ADE), notably due to over-alerting and alert-fatigue. Many methods have been proposed in the literature to reduce over-alerting of CDSS: enhancing ...
Lire la suite >Clinical decision support systems (CDSS) fail to prevent adverse drug events (ADE), notably due to over-alerting and alert-fatigue. Many methods have been proposed in the literature to reduce over-alerting of CDSS: enhancing post-alert medical management, taking into account user-related context, patient-related context and temporal aspects, improving medical relevance of alerts, filtering or tiering alerts on the basis of their strength of evidence, their severity, their override rate, or the probability of outcome. This paper analyzes the different options, and proposes the setup of SPC-CDSS (statistically prioritized and contextualized CDSS). The principle is that, when a SPC-CDSS is implemented in a medical unit, it first reuses actual clinical data, and searches for traceable outcomes. Then, for each rule trying to prevent this outcome, the SPC-CDSS automatically estimates the conditional probability of outcome knowing that the conditions of the rule are met, by retrospective secondary use of data. The alert can be turned off below a chosen probability threshold. This probability computation can be performed in each medical unit, in order to take into account its sensitivity to context.Lire moins >
Lire la suite >Clinical decision support systems (CDSS) fail to prevent adverse drug events (ADE), notably due to over-alerting and alert-fatigue. Many methods have been proposed in the literature to reduce over-alerting of CDSS: enhancing post-alert medical management, taking into account user-related context, patient-related context and temporal aspects, improving medical relevance of alerts, filtering or tiering alerts on the basis of their strength of evidence, their severity, their override rate, or the probability of outcome. This paper analyzes the different options, and proposes the setup of SPC-CDSS (statistically prioritized and contextualized CDSS). The principle is that, when a SPC-CDSS is implemented in a medical unit, it first reuses actual clinical data, and searches for traceable outcomes. Then, for each rule trying to prevent this outcome, the SPC-CDSS automatically estimates the conditional probability of outcome knowing that the conditions of the rule are met, by retrospective secondary use of data. The alert can be turned off below a chosen probability threshold. This probability computation can be performed in each medical unit, in order to take into account its sensitivity to context.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CHU Lille
CHU Lille
Collections :
Date de dépôt :
2023-05-25T03:32:06Z
2024-06-13T12:08:08Z
2024-06-13T12:08:08Z