Phenolic compounds from humulus lupulus ...
Document type :
Article dans une revue scientifique: Article original
PMID :
Permalink :
Title :
Phenolic compounds from humulus lupulus as natural antimicrobial products: New weapons in the fight against methicillin resistant staphylococcus aureus, leishmania mexicana and trypanosoma brucei Strains
Author(s) :
Bocquet, Laeticia [Auteur]
Institut Charles Viollette (ICV) - ULR 7394 [ICV]
Sahpaz, Sevser [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Bonneau, Natacha [Auteur]
Institut Charles Viollette (ICV) - ULR 7394 [ICV]
Beaufay, Claire [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Mahieux, Séverine [Auteur]
Lille Inflammation Research International Center - U 995 [LIRIC]
Institut de Recherche Translationnelle sur l'Inflammation (INFINITE) - U1286
Samaillie, Jennifer [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
Institut Charles Viollette (ICV) - ULR 7394 [ICV]
Roumy, Vincent [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Jacquin, Justine [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Bordage, Simon [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Hennebelle, Thierry [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Chai, Feng [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Quetin-Leclercq, Joëlle [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Neut, Christel [Auteur]
Lille Inflammation Research International Center - U 995 [LIRIC]
Institut de Recherche Translationnelle sur l'Inflammation (INFINITE) - U1286
Riviere, Celine [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Institut Charles Viollette (ICV) - ULR 7394 [ICV]
Sahpaz, Sevser [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Bonneau, Natacha [Auteur]
Institut Charles Viollette (ICV) - ULR 7394 [ICV]
Beaufay, Claire [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Mahieux, Séverine [Auteur]
Lille Inflammation Research International Center - U 995 [LIRIC]
Institut de Recherche Translationnelle sur l'Inflammation (INFINITE) - U1286
Samaillie, Jennifer [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
Institut Charles Viollette (ICV) - ULR 7394 [ICV]
Roumy, Vincent [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Jacquin, Justine [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Bordage, Simon [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Hennebelle, Thierry [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Chai, Feng [Auteur]
Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS]
Quetin-Leclercq, Joëlle [Auteur]
Université Catholique de Louvain = Catholic University of Louvain [UCL]
Neut, Christel [Auteur]
Lille Inflammation Research International Center - U 995 [LIRIC]
Institut de Recherche Translationnelle sur l'Inflammation (INFINITE) - U1286
Riviere, Celine [Auteur]
Institut Charles Viollette (ICV) - EA 7394 [ICV]
BioEcoAgro - UMR-T 1158
Journal title :
Molecules
Volume number :
24
Pages :
1024
Publication date :
2019-03-30
ISSN :
1420-3049
Keyword(s) :
Trypanosoma brucei brucei
Leishmania mexicana mexicana
methicillin-resistant Staphylococcus aureus
antimicrobial agents
prenylated phenolic compounds
Humulus lupulus
Leishmania mexicana mexicana
methicillin-resistant Staphylococcus aureus
antimicrobial agents
prenylated phenolic compounds
Humulus lupulus
HAL domain(s) :
Sciences du Vivant [q-bio]
English abstract : [en]
New anti-infective agents are urgently needed to fight microbial resistance. Methicillin-resistant Staphylococcus aureus (MRSA) strains are particularly responsible for complicated pathologies that are difficult to treat ...
Show more >New anti-infective agents are urgently needed to fight microbial resistance. Methicillin-resistant Staphylococcus aureus (MRSA) strains are particularly responsible for complicated pathologies that are difficult to treat due to their virulence and the formation of persistent biofilms forming a complex protecting shell. Parasitic infections caused by Trypanosoma brucei and Leishmania mexicana are also of global concern, because of the mortality due to the low number of safe and effective treatments. Female inflorescences of hop produce specialized metabolites known for their antimicrobial effects but underexploited to fight against drug-resistant microorganisms. In this study, we assessed the antimicrobial potential of phenolic compounds against MRSA clinical isolates, T. brucei and L. mexicana. By fractionation process, we purified the major prenylated chalcones and acylphloroglucinols, which were quantified by UHPLC-UV in different plant parts, showing their higher content in the active flowers extract. Their potent antibacterial action (MIC < 1 µg/mL for the most active compound) was demonstrated against MRSA strains, through kill curves, post-antibiotic effects, anti-biofilm assays and synergy studies with antibiotics. An antiparasitic activity was also shown for some purified compounds, particularly on T. brucei (IC50 < 1 to 11 µg/mL). Their cytotoxic activity was assessed both on cancer and non-cancer human cell lines.Show less >
Show more >New anti-infective agents are urgently needed to fight microbial resistance. Methicillin-resistant Staphylococcus aureus (MRSA) strains are particularly responsible for complicated pathologies that are difficult to treat due to their virulence and the formation of persistent biofilms forming a complex protecting shell. Parasitic infections caused by Trypanosoma brucei and Leishmania mexicana are also of global concern, because of the mortality due to the low number of safe and effective treatments. Female inflorescences of hop produce specialized metabolites known for their antimicrobial effects but underexploited to fight against drug-resistant microorganisms. In this study, we assessed the antimicrobial potential of phenolic compounds against MRSA clinical isolates, T. brucei and L. mexicana. By fractionation process, we purified the major prenylated chalcones and acylphloroglucinols, which were quantified by UHPLC-UV in different plant parts, showing their higher content in the active flowers extract. Their potent antibacterial action (MIC < 1 µg/mL for the most active compound) was demonstrated against MRSA strains, through kill curves, post-antibiotic effects, anti-biofilm assays and synergy studies with antibiotics. An antiparasitic activity was also shown for some purified compounds, particularly on T. brucei (IC50 < 1 to 11 µg/mL). Their cytotoxic activity was assessed both on cancer and non-cancer human cell lines.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
Inserm
CHU Lille
Inserm
CHU Lille
Collections :
Submission date :
2023-05-30T07:30:00Z
2024-02-22T10:05:02Z
2024-04-23T08:01:51Z
2024-04-23T08:03:18Z
2024-02-22T10:05:02Z
2024-04-23T08:01:51Z
2024-04-23T08:03:18Z
Files
- molecules-24-01024-v2.pdf
- Non spécifié
- Open access
- Access the document