Q-shear transformation for MQMAS and STMAS ...
Type de document :
Article dans une revue scientifique: Article original
PMID :
URL permanente :
Titre :
Q-shear transformation for MQMAS and STMAS NMR spectra
Auteur(s) :
Hung, Ivan [Auteur]
National High Magnetic Field Laboratory [MPA-NHMFL]
Trebosc, Julien [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Hoatson, Gina L. [Auteur]
College of William and Mary [Williamsburg] [WM]
Vold, R. L. [Auteur]
College of William and Mary [Williamsburg] [WM]
Amoureux, Jean-Paul [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Gan, Zhehong [Auteur]
National High Magnetic Field Laboratory [MPA-NHMFL]
National High Magnetic Field Laboratory [MPA-NHMFL]
Trebosc, Julien [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Hoatson, Gina L. [Auteur]
College of William and Mary [Williamsburg] [WM]
Vold, R. L. [Auteur]
College of William and Mary [Williamsburg] [WM]
Amoureux, Jean-Paul [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Gan, Zhehong [Auteur]
National High Magnetic Field Laboratory [MPA-NHMFL]
Titre de la revue :
Journal of Magnetic Resonance
Nom court de la revue :
J. Magn. Reson.
Numéro :
201
Pagination :
81-86
Date de publication :
2009-11
ISSN :
1090-7807
Mot(s)-clé(s) en anglais :
Isotropic
Nb-93
Sc-45
Shearing transformation
Representation
STMAS
MQMAS
Nb-93
Sc-45
Shearing transformation
Representation
STMAS
MQMAS
Discipline(s) HAL :
Chimie
Résumé en anglais : [en]
The multiple-quantum magic-angle spinning (MQMAS) and satellite-transition magic-angle spinning (STMAS) experiments refocus second-order quadrupolar broadening of half-integer quadrupolar spins in the form of two-dimensional ...
Lire la suite >The multiple-quantum magic-angle spinning (MQMAS) and satellite-transition magic-angle spinning (STMAS) experiments refocus second-order quadrupolar broadening of half-integer quadrupolar spins in the form of two-dimensional experiments. Isotropic shearing is usually applied along the indirect dimension of the 2D spectra such that an isotropic projection free of anisotropic quadrupolar broadening can be obtained. An alternative shear transformation by a factor equal to the coherence level (quantum number) selected during the evolution period is proposed. Such a transformation eliminates chemical shift along the indirect dimension leaving only the second-order quadrupolar-induced shift and anisotropic broadening, and is expected to be particularly useful for disordered systems. This transformation, dubbed Q-shearing, can help avoid aliasing problems due to large chemical shift ranges and spinning sidebands. It can also be used as an intermediate step to the isotropic representation for expanding the spectral window of rotor-synchronized experiments.Lire moins >
Lire la suite >The multiple-quantum magic-angle spinning (MQMAS) and satellite-transition magic-angle spinning (STMAS) experiments refocus second-order quadrupolar broadening of half-integer quadrupolar spins in the form of two-dimensional experiments. Isotropic shearing is usually applied along the indirect dimension of the 2D spectra such that an isotropic projection free of anisotropic quadrupolar broadening can be obtained. An alternative shear transformation by a factor equal to the coherence level (quantum number) selected during the evolution period is proposed. Such a transformation eliminates chemical shift along the indirect dimension leaving only the second-order quadrupolar-induced shift and anisotropic broadening, and is expected to be particularly useful for disordered systems. This transformation, dubbed Q-shearing, can help avoid aliasing problems due to large chemical shift ranges and spinning sidebands. It can also be used as an intermediate step to the isotropic representation for expanding the spectral window of rotor-synchronized experiments.Lire moins >
Langue :
Anglais
Audience :
Internationale
Vulgarisation :
Non
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
RMN et matériaux inorganiques (RM2I)
Date de dépôt :
2023-05-30T18:00:45Z
2024-04-25T12:51:08Z
2024-04-25T12:51:08Z