Efficient Promoters and Reaction Paths in ...
Type de document :
Article dans une revue scientifique: Article original
DOI :
URL permanente :
Titre :
Efficient Promoters and Reaction Paths in the CO2 Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts
Auteur(s) :
Barrios, Alan J. [Auteur]
Peron, Deizi-Vanessa [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Chakkingal, Anoop [Auteur]
Dugulan, Iulian [Auteur]
Moldovan, Simona [Auteur]
Nakouri, Kalthoum [Auteur]
Thuriot, Joelle [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Wojcieszak, Robert [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Thybaut, Joris W. [Auteur]
Virginie, Mirella [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Peron, Deizi-Vanessa [Auteur]
Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Chakkingal, Anoop [Auteur]
Dugulan, Iulian [Auteur]
Moldovan, Simona [Auteur]
Nakouri, Kalthoum [Auteur]
Thuriot, Joelle [Auteur]

Unité de Catalyse et Chimie du Solide - UMR 8181 [UCCS]
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Wojcieszak, Robert [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Thybaut, Joris W. [Auteur]
Virginie, Mirella [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Khodakov, Andrei [Auteur]

Unité de Catalyse et Chimie du Solide (UCCS) - UMR 8181
Titre de la revue :
ACS Catalysis
Nom court de la revue :
ACS Catal.
Numéro :
12
Pagination :
3211–3225
Éditeur :
American Chemical Society
Date de publication :
2022-02-23
ISSN :
2155-5435
Mot(s)-clé(s) en anglais :
CO2 mitigation
hydrogenation
light olefins
iron catalysts
high throughput
hydrogenation
light olefins
iron catalysts
high throughput
Discipline(s) HAL :
Chimie/Catalyse
Sciences de l'environnement
Chimie
Sciences de l'environnement
Chimie
Résumé en anglais : [en]
Hydrogenation into light olefins is an attractive strategy for CO2 fixation into chemicals. In this article, high throughput experimentation and extended characterization were employed to identify the most efficient promoters ...
Lire la suite >Hydrogenation into light olefins is an attractive strategy for CO2 fixation into chemicals. In this article, high throughput experimentation and extended characterization were employed to identify the most efficient promoters and to elucidate structure–performance correlations and reaction paths in the CO2 hydrogenation to light olefins over zirconia-supported iron catalysts. K, Cs, Ba, Ce, Nb, Mo, Mn, Cu, Zn, Ga, In, Sn, Sb, Bi, and V were added in the same molar concentrations to zirconia-supported iron catalyst and evaluated as promoters. The CO2 hydrogenation proceeds via intermediate formation of CO followed by surface polymerization. Over the iron catalysts containing alkaline promoters, initially higher selectivity to light olefins shows a significant decrease with the CO2 conversion, because of further surface polymerization and the formation of longer chain hydrocarbons. A relatively low selectivity to light olefins over the promoted catalysts, without potassium, is not much affected by the CO2 conversion. Essential characteristics of iron catalysts to obtain a higher yield of light olefins seem to be a higher iron dispersion, a higher extent of carbidization, and optimized basicity. The strongest promoting effect is reported for the alkaline metals. A further increase in the light olefin selectivity is observed after simultaneous addition of potassium with copper, molybdenum, gallium, or cerium.Lire moins >
Lire la suite >Hydrogenation into light olefins is an attractive strategy for CO2 fixation into chemicals. In this article, high throughput experimentation and extended characterization were employed to identify the most efficient promoters and to elucidate structure–performance correlations and reaction paths in the CO2 hydrogenation to light olefins over zirconia-supported iron catalysts. K, Cs, Ba, Ce, Nb, Mo, Mn, Cu, Zn, Ga, In, Sn, Sb, Bi, and V were added in the same molar concentrations to zirconia-supported iron catalyst and evaluated as promoters. The CO2 hydrogenation proceeds via intermediate formation of CO followed by surface polymerization. Over the iron catalysts containing alkaline promoters, initially higher selectivity to light olefins shows a significant decrease with the CO2 conversion, because of further surface polymerization and the formation of longer chain hydrocarbons. A relatively low selectivity to light olefins over the promoted catalysts, without potassium, is not much affected by the CO2 conversion. Essential characteristics of iron catalysts to obtain a higher yield of light olefins seem to be a higher iron dispersion, a higher extent of carbidization, and optimized basicity. The strongest promoting effect is reported for the alkaline metals. A further increase in the light olefin selectivity is observed after simultaneous addition of potassium with copper, molybdenum, gallium, or cerium.Lire moins >
Langue :
Anglais
Comité de lecture :
Oui
Audience :
Internationale
Vulgarisation :
Non
Projet ANR :
Établissement(s) :
Université de Lille
CNRS
Centrale Lille
ENSCL
Univ. Artois
CNRS
Centrale Lille
ENSCL
Univ. Artois
Collections :
Équipe(s) de recherche :
Valorisation des alcanes et de la biomasse (VAALBIO)
Catalyse pour l’énergie et la synthèse de molécules plateforme (CEMOP)
Catalyse pour l’énergie et la synthèse de molécules plateforme (CEMOP)
Date de dépôt :
2023-06-05T08:10:11Z
2023-06-27T09:40:18Z
2023-06-28T08:34:47Z
2023-06-27T09:40:18Z
2023-06-28T08:34:47Z