One-sided synthetic control charts for ...
Document type :
Article dans une revue scientifique: Article original
Permalink :
Title :
One-sided synthetic control charts for monitoring the multivariate coefficient of variation
Author(s) :
Nguyen, Thong [Auteur]
Laboratoire de Mathématiques de Bretagne Atlantique [LMBA]
Tran, Kim-Phuc [Auteur]
Castagliola, Philippe [Auteur]
Laboratoire des Sciences du Numérique de Nantes [LS2N]
Systèmes Logistiques et de Production [LS2N - équipe SLP ]
Celano, Giovanni [Auteur]
Università degli studi di Catania = University of Catania [Unict]
Lardjane, Salim [Auteur]
Laboratoire de Mathématiques de Bretagne Atlantique [LMBA]
Laboratoire de Mathématiques de Bretagne Atlantique [LMBA]
Tran, Kim-Phuc [Auteur]
Castagliola, Philippe [Auteur]
Laboratoire des Sciences du Numérique de Nantes [LS2N]
Systèmes Logistiques et de Production [LS2N - équipe SLP ]
Celano, Giovanni [Auteur]
Università degli studi di Catania = University of Catania [Unict]
Lardjane, Salim [Auteur]
Laboratoire de Mathématiques de Bretagne Atlantique [LMBA]
Journal title :
Journal of Statistical Computation and Simulation
Abbreviated title :
J. Stat. Comput. Simul.
Volume number :
89
Pages :
1841-1862
Publication date :
2019-06-01
ISSN :
0094-9655
English keyword(s) :
Synthetic chart
Markov chain
multivariate coefficient of variation
steady-state
Markov chain
multivariate coefficient of variation
steady-state
HAL domain(s) :
Sciences de l'ingénieur [physics]
English abstract : [en]
Shewhart’s type control charts for monitoring the Multivariate Coefficient of Varia-
tion (MCV) have recently been proposed in order to monitor the relative variability
compared with the mean. These approaches are known ...
Show more >Shewhart’s type control charts for monitoring the Multivariate Coefficient of Varia- tion (MCV) have recently been proposed in order to monitor the relative variability compared with the mean. These approaches are known to be rather slow in the detection of small or moderate process shifts. In this paper, in order to improve the detection efficiency, two one-sided Synthetic charts for the MCV are proposed. A Markov chain method is used to evaluate the statistical performance of the proposed charts. Furthermore, computational experiments reveal that the proposed control charts outperform the Shewhart MCV control chart in terms of the average run length to detect an out-of-control state. Finally, the implementation of the proposed chart is illustrated with an example using steel sleeves data.Show less >
Show more >Shewhart’s type control charts for monitoring the Multivariate Coefficient of Varia- tion (MCV) have recently been proposed in order to monitor the relative variability compared with the mean. These approaches are known to be rather slow in the detection of small or moderate process shifts. In this paper, in order to improve the detection efficiency, two one-sided Synthetic charts for the MCV are proposed. A Markov chain method is used to evaluate the statistical performance of the proposed charts. Furthermore, computational experiments reveal that the proposed control charts outperform the Shewhart MCV control chart in terms of the average run length to detect an out-of-control state. Finally, the implementation of the proposed chart is illustrated with an example using steel sleeves data.Show less >
Language :
Anglais
Audience :
Internationale
Popular science :
Non
Administrative institution(s) :
Université de Lille
ENSAIT
Junia HEI
ENSAIT
Junia HEI
Collections :
Submission date :
2023-06-20T11:06:13Z
2024-02-26T13:21:11Z
2024-02-29T11:49:44Z
2024-02-26T13:21:11Z
2024-02-29T11:49:44Z
Files
- document
- Open access
- Access the document