Contribution of Ribbon-Structured SiO2 ...
Type de document :
Compte-rendu et recension critique d'ouvrage
DOI :
Titre :
Contribution of Ribbon-Structured SiO2 Films to AlN-Based and AlN/Diamond-Based Lamb Wave Resonators
Auteur(s) :
Moutaouekkil, Mohammed [Auteur correspondant]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Université Mohammed Premier [Oujda] = Université Mohammed Ier
Streque, Jérémy [Auteur]
Institut Jean Lamour [IJL]
Marbouh, Othmane [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Boudouti, El Houssaine [Auteur]
Université Mohammed Premier [Oujda] = Université Mohammed Ier
Elmazria, Omar [Auteur]
Institut Jean Lamour [IJL]
Pernod, Philippe [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Bou Matar Lacaze, Olivier [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Talbi, Abdelkrim [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Université Mohammed Premier [Oujda] = Université Mohammed Ier
Streque, Jérémy [Auteur]
Institut Jean Lamour [IJL]
Marbouh, Othmane [Auteur]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
El Boudouti, El Houssaine [Auteur]
Université Mohammed Premier [Oujda] = Université Mohammed Ier
Elmazria, Omar [Auteur]
Institut Jean Lamour [IJL]
Pernod, Philippe [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Bou Matar Lacaze, Olivier [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Talbi, Abdelkrim [Auteur]

Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Titre de la revue :
Sensors
Pagination :
6284
Éditeur :
MDPI
Date de publication :
2023-07-10
ISSN :
1424-8220
Mot(s)-clé(s) en anglais :
S0 Lamb-wave mode
K2
AlN/SiO2 bi-layer
SiO2 ribbons
TCF
K2
AlN/SiO2 bi-layer
SiO2 ribbons
TCF
Discipline(s) HAL :
Sciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
Résumé en anglais : [en]
New designs based on S0 Lamb modes in AlN thin layer resonating structures coupled with the implementation of structural elements in SiO2, are theoretically analyzed by the Finite Element Method (FEM). This study compares ...
Lire la suite >New designs based on S0 Lamb modes in AlN thin layer resonating structures coupled with the implementation of structural elements in SiO2, are theoretically analyzed by the Finite Element Method (FEM). This study compares the typical characteristics of different interdigital transducer (IDTs) configurations, involving either a continuous SiO2 cap layer, or structured SiO2 elements, showing their performance in the usual terms of electromechanical coupling coefficient (K2), phase velocity, and temperature coefficient of frequency (TCF), by varying structural parameters and boundary conditions. This paper shows how to reach temperature-compensated, high-performance resonator structures based on ribbon-structured SiO2 capping. The addition of a thin diamond layer can also improve the velocity and electromechanical coupling coefficient, while keeping zero TCF and increasing the solidity of the membranes. Beyond the increase in performance allowed by such resonator configurations, their inherent structure shows additional benefits in terms of passivation, which makes them particularly relevant for sensing applications in stern environments.Lire moins >
Lire la suite >New designs based on S0 Lamb modes in AlN thin layer resonating structures coupled with the implementation of structural elements in SiO2, are theoretically analyzed by the Finite Element Method (FEM). This study compares the typical characteristics of different interdigital transducer (IDTs) configurations, involving either a continuous SiO2 cap layer, or structured SiO2 elements, showing their performance in the usual terms of electromechanical coupling coefficient (K2), phase velocity, and temperature coefficient of frequency (TCF), by varying structural parameters and boundary conditions. This paper shows how to reach temperature-compensated, high-performance resonator structures based on ribbon-structured SiO2 capping. The addition of a thin diamond layer can also improve the velocity and electromechanical coupling coefficient, while keeping zero TCF and increasing the solidity of the membranes. Beyond the increase in performance allowed by such resonator configurations, their inherent structure shows additional benefits in terms of passivation, which makes them particularly relevant for sensing applications in stern environments.Lire moins >
Langue :
Anglais
Vulgarisation :
Non
Source :
Fichiers
- document
- Accès libre
- Accéder au document
- Moutaouekkil_2023_sensors-23-06284-v2.pdf
- Accès libre
- Accéder au document
- Accès libre
- Accéder au document